全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于无穷状态转换模型的中国股票市场收益率分析

, PP. 10-19

Keywords: 无穷状态转换,向量自回归,贝叶斯推断,分块采样,A股市场收益率

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本文建立一个状态数目由数据决定的马尔可夫转换向量自回归模型,用贝叶斯方法推断模型参数,并利用基于Gibbs分块采样的MCMC方法做逼近。然后本文用此模型和估计方法分析上海A股市场周收益率,结果发现,我国股票市场最可能存在5个不同的状态,状态间的区分首以波动性大小不同为标准,股市除了在初期波动性极小外,从1992年4月开始可以分为两个阶段,在各阶段股市均在三个状态之间转换。

References

[1]  Hamilton J. A new approach to the economic analysis of nonstationary time series and the business cycle[J]. Econometrica, 1989, (2):357-384.
[2]  Hamilton J. Time series analysis[M]. New Jersey: Princeton University press, 1994.
[3]  Krolzig M. Statistical analysis of cointegrated VAR processes with markovian regime shifts[R].Working Papers, Humboldt University, 1996.
[4]  Cai Jun. A Markov model of switching-regime ARCH[J]. Journal of Business and Economic Statistics, 1994, 12(3):309-316.
[5]  Garcia R, Perron P. An analysis of the real interest rate under regime shifts[J]. The Review of Economics and Statistics, 1996, 78(1):111-125.
[6]  Mills T C, Wang Ping. Regime shifts in European real interest rates[J].Review of world economics, 2003, 139(1)66-81.
[7]  朱钧钧, 谢识予.上证综指马尔可夫转换模型的MCMC估计和分析[J].系统工程, 2010, 28(4):9-14.
[8]  朱钧钧, 谢识予.中国股市波动率的双重不对称性及其解释——基于MS_TGARCH模型的MCMC估计和分析[J].金融研究, 2011, (3): 134-148.
[9]  严太华, 陈明玉.基于马尔科夫切换模型的上证指数周收益率时间序列分析[J].中国管理科学, 2009, 17(6):33-38. 浏览
[10]  Kim C J, Nelson C R. State-space models with regime-switching: Classical and gibbs-sampling approaches with applications[M].Cambridge, Mass: The MIT Press, 1999.
[11]  Psaradakis Z, Sola M. Finite sample properties of the maximum likelihood estimator in autoregressive models with Markov switching[J].Journal of Econometrics, 1998, 86:369-386.
[12]  Beal M J, Ghahramani Z, Rasmussen C E. The infinite hidden markov model[M].//Dietterich T G, Ghahrama Z ni. Advances in neural information processing systems. Cambridge, MA:MIT Press, 2002.
[13]  Teh Y W, Jordan M I, Beal M J, et al. Hierarchical dirichlet processes[J]. Journal of the American Statistical Association, 2006, 101:1566-1581.
[14]  Fox E B, Sudderth E B, Jordan M I, et al. Nonparametric bayesian learning of switching linear dynamical systems[M].//Koller D. Advances in neural information processing systems 21, Cambridge, MA:MIT Press, 2009.
[15]  Carvalho C, Lopes H. Simulation based sequential analysis of Markov switching stochastic volatility models[J].Computational Statistics and Data Analysis, 2006, 51(9):4526-4542.
[16]  张兵.基于状态转换方法的中国股市波动研究[J].金融研究, 2005, (3):100-108.
[17]  高金余, 陈翔.马尔可夫切换模型及其在中国股市中的应用[J].中国管理科学, 2007, 15(6):20-25. 浏览
[18]  Geweke J, Amisano G. Comparing and evaluating Bayesian predictive distributions of asset returns[J]. International Journal of Forecasting, 2010, 26(2):216-230.
[19]  Kass R E, Raftery A E. Bayes factors[J]. Journal of the American Statistical Association, 1995, 90(430):773-795.
[20]  Dawid A P. Statistical theory: The prequential approach[J]. Journal of the Royal Statistical Society, 1984, Ser. A, 147:278-292.
[21]  Brock W A, Dechert D, Scheinkman H, et al. A test for independence based on correlation dimension[J]. Econometric Reviews, 1996, 15(3):187-235.
[22]  Luginbuhl R, Vos A. Bayesian analysis of an unobserved component time series model of GDP with Markov switching and time varying growths[J]. Journal of Business and Economic Statistics, 1999, 17(4):456-465.
[23]  Albert J H, Chib S. Bayes inference via gibbs sampling of autoregressive time series subject to markov mean and variance shifts[J]. Journal of Business and Economic Statistics, 1993, 11(1):1-15.
[24]  Perlin M.MS_regress-the MATLAB Package for Markov regime switching models[EB/OL] . 2010-11-26.http://ssrn.com/abstract=1714016.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133