全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Impulse Control Disorders Following Deep Brain Stimulation of the Subthalamic Nucleus in Parkinson's Disease: Clinical Aspects

DOI: 10.4061/2011/658415

Full-Text   Cite this paper   Add to My Lib

Abstract:

Parkinson's disease (PD) has been associated with the development of impulse control disorders (ICDs), possibly due to overstimulation of the mesolimbic system by dopaminergic medication. Preliminary reports have suggested that deep brain stimulation (DBS), a neurosurgical procedure offered to patients with treatment-resistant PD, affects ICD in a twofold way. Firstly, DBS allows a decrease in dopaminergic medication and hence causes an improvement in ICDs. Secondly, some studies have proposed that specific ICDs may develop after DBS. This paper addresses the effects of DBS on ICDs in patients with PD. A literature search identified four original studies examining a total of 182 patients for ICDs and nine case reports of 39 patients that underwent DBS and developed ICDs at some point. Data analysis from the original studies did not identify a significant difference in ICDs between patients receiving dopaminergic medication and patients on DBS, whilst the case reports showed that 56% of patients undergoing DBS had poor outcome with regards to ICDs. We discuss these ambivalent findings in the light of proposed pathogenetic mechanisms. Longitudinal, prospective studies with larger number of patients are required in order to fully understand the role of DBS on ICDs in patients with PD. 1. Introduction Parkinson’s disease (PD) is increasingly recognized as a neurodegenerative condition characterized by motor dysfunction and both physiological and psychological disturbances [1]. Although PD has been classically associated with psychiatric comorbidities such as dementia [2] and psychosis [3], recent studies have shown that patients with PD can develop a variety of behavioral problems associated with impulse dyscontrol, including pathological gambling, hypersexuality, punding (repetitive purposeless motor acts not distressing to the patient), and compulsive shopping and eating [4]. These pathological behaviors are currently classified as impulse control disorders (ICDs) and exert negative consequences in terms of the patients’ health-related quality of life, mainly because of the interference with their social functioning [5]. The aetiopathogenesis of ICDs in patients with PD is not completely understood, but previous studies showed that dopamine replacement therapy can lead to the development of ICDs due to overstimulation of the mesolimbic dopaminergic system [6] which modulates behavioral responses to reward, motivation, and reinforcement. A recent large cross-sectional study has shown that up to 13.6% of patients with treated idiopathic PD may suffer from

References

[1]  P. Kumar and M. Clark, Kumar and Clark’s: Clinical Medicine, WB Saunders, London, UK, 2009.
[2]  M. J. Docherty and D. J. Burn, “Parkinson's Disease Dementia,” Current Neurology and Neuroscience Reports, vol. 10, no. 4, pp. 292–298, 2010.
[3]  W. Poewe, “Psychosis in Parkinson's disease,” Movement Disorders, vol. 18, no. 6, pp. S80–S87, 2003.
[4]  P. R. Burkhard, S. Catalano-Chiuvé, A. Gronchi-Perrin, A. Berney, F. J. G. Vingerhoets, and C. Lüscher, “Impulse control disorders and Parkinson's diseaseTroubles du contr?le des impulsions et maladie de Parkinson,” Revue Medicale Suisse, vol. 4, no. 156, pp. 1145–1150, 2008.
[5]  World Health Organisation, “International Statistical Classification of Diseases and Related Health Problems: Chapter 5 Mental and Behavioural disorders,” 2007, http://www.who.int/classifications/apps/icd/icd10online.
[6]  D. Grosset, “Dopamine agonists and therapy compliance,” Neurological Sciences, vol. 29, no. 5, pp. S375–S376, 2008.
[7]  D. Weintraub, J. Koester, M. N. Potenza et al., “Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients,” Archives of Neurology, vol. 67, no. 5, pp. 589–595, 2010.
[8]  K. I. Fujimoto, “Pathological gambling and Parkinson disease,” Brain and Nerve, vol. 60, no. 9, pp. 1039–1046, 2008.
[9]  W. Fan, H. Ding, J. Ma, and P. Chan, “Impulse control disorders in Parkinson's disease in a Chinese population,” Neuroscience Letters, vol. 465, no. 1, pp. 6–9, 2009.
[10]  E. Moro, M. Scerrati, L. M. A. Romito, R. Roselli, P. Tonali, and A. Albanese, “Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson's disease,” Neurology, vol. 53, no. 1, pp. 85–90, 1999.
[11]  A. Parent and L. N. Hazrati, “Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry,” Brain Research Reviews, vol. 20, no. 1, pp. 128–154, 1995.
[12]  M. Porta, A. Brambilla, A. E. Cavanna et al., “Thalamic deep brain stimulation for treatment-refractory Tourette syndrome: two-year outcome,” Neurology, vol. 73, no. 17, pp. 1375–1380, 2009.
[13]  A. Funkiewiez, C. Ardouin, E. Caputo et al., “Long term of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson's disease,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 75, no. 6, pp. 834–839, 2004.
[14]  M. F. Contarino, A. Daniele, A. H. Sibilia et al., “Cognitive outcome 5 years after bilateral chronic stimulation of subthalamic nucleus in patients with Parkinson's disease,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 78, no. 3, pp. 248–252, 2007.
[15]  T. D. H?lbig, W. Tse, P. G. Frisina et al., “Subthalamic deep brain stimulation and impulse control in Parkinson's disease,” European Journal of Neurology, vol. 16, no. 4, pp. 493–497, 2009.
[16]  V. Czernecki, B. Pillon, J. L. Houeto et al., “Does bilateral stimulation of the subthalamic nucleus aggravate apathy in Parkinson's disease?” Journal of Neurology, Neurosurgery and Psychiatry, vol. 76, no. 6, pp. 775–779, 2005.
[17]  E. T. Rolls, J. Hornak, D. Wade, and J. McGrath, “Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage,” Journal of Neurology Neurosurgery and Psychiatry, vol. 57, no. 12, pp. 1518–1524, 1994.
[18]  A. Bechara, H. Damasio, and A. R. Damasio, “Emotion, decision making and the orbitofrontal cortex,” Cerebral Cortex, vol. 10, no. 3, pp. 295–307, 2000.
[19]  V. Czernecki, B. Pillon, J. L. Houeto, J. B. Pochon, R. Levy, and B. Dubois, “Motivation, reward, and Parkinson's disease: influence of dopatherapy,” Neuropsychologia, vol. 40, no. 13, pp. 2257–2267, 2002.
[20]  L. M. Romito, M. Raja, A. Daniele et al., “Transient mania with hypersexuality after surgery for high-frequency stimulation of the subthalamic nucleus in Parkinson's disease,” Movement Disorders, vol. 17, no. 6, pp. 1371–1374, 2002.
[21]  P. Doshi and P. Bhargava, “Hypersexuality following subthalamic nucleus stimulation for Parkinson's disease,” Neurology India, vol. 56, no. 4, pp. 474–476, 2008.
[22]  H. M. M. Smeding, A. E. Goudriaan, E. M. J. Foncke, P. R. Schuurman, J. D. Speelman, and B. Schmand, “Pathological gambling after bilateral subthalamic nucleus stimulation in Parkinson disease,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 78, no. 5, pp. 517–519, 2007.
[23]  M. Sensi, R. Eleopra, M. A. Cavallo et al., “Explosive-aggressive behavior related to bilateral subthalamic stimulation,” Parkinsonism and Related Disorders, vol. 10, no. 4, pp. 247–251, 2004.
[24]  S.-Y. Lim, S. S. O'Sullivan, K. Kotschet et al., “Dopamine dysregulation syndrome, impulse control disorders and punding after deep brain stimulation surgery for Parkinson's disease,” Journal of Clinical Neuroscience, vol. 16, no. 9, pp. 1148–1152, 2009.
[25]  T. Witjas, C. Baunez, J. M. Henry et al., “Addiction in Parkinson's disease: impact of subthalamic nucleus deep brain stimulation,” Movement Disorders, vol. 20, no. 8, pp. 1052–1055, 2005.
[26]  F. Bandini, A. Primavera, M. Pizzorno, and L. Cocito, “Using STN DBS and medication reduction as a strategy to treat pathological gambling in Parkinson's disease,” Parkinsonism and Related Disorders, vol. 13, no. 6, pp. 369–371, 2007.
[27]  C. Ardouin, V. Voon, Y. Worbe et al., “Pathological gambling in Parkinson's disease improves on chronic subthalamic nucleus stimulation,” Movement Disorders, vol. 21, no. 11, pp. 1941–1946, 2006.
[28]  R. Wenzelburger, B. R. Zhang, S. Pohle et al., “Force overflow and levodopa-induced dyskinesias in Parkinson's disease,” Brain, vol. 125, no. 4, pp. 871–879, 2002.
[29]  Y. Temel, A. Kessels, S. Tan, A. Topdag, P. Boon, and V. Visser-Vandewalle, “Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review,” Parkinsonism and Related Disorders, vol. 12, no. 5, pp. 265–272, 2006.
[30]  L. Mallet, M. Schüpbach, K. N'Diaye et al., “Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 25, pp. 10661–10666, 2007.
[31]  J. L. Houeto, V. Mesnage, L. Mallet et al., “Behavioural disorders, Parkinson's disease and subthalamic stimulation,” Journal of Neurology Neurosurgery and Psychiatry, vol. 72, no. 6, pp. 701–707, 2002.
[32]  D. Weintraub and M. N. Potenza, “Impulse control disorders in Parkinson's disease,” Current Neurology and Neuroscience Reports, vol. 6, no. 4, pp. 302–306, 2006.
[33]  L. Mallet, V. Mesnage, J. L. Houeto et al., “Compulsions, Parkinson's disease, and stimulation,” Lancet, vol. 360, no. 9342, pp. 1302–1304, 2002.
[34]  D. Weintraub, A. D. Siderowf, M. N. Potenza et al., “Association of dopamine agonist use with impulse control disorders in Parkinson disease,” Archives of Neurology, vol. 63, no. 7, pp. 969–973, 2006.
[35]  V. Voon, T. Thomsen, J. M. Miyasaki et al., “Factors associated with dopaminergic drug-related pathological gambling in Parkinson disease,” Archives of Neurology, vol. 64, no. 2, pp. 212–216, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133