全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高桥墩-桩基结构体系屈曲的突变理论分析

, PP. 49-53

Keywords: 桥梁工程,高桥墩,尖点突变模型,屈曲,桩基础,稳定性

Full-Text   Cite this paper   Add to My Lib

Abstract:

?在深入研究山区高桥墩-桩基结构体系屈曲机理的基础上,结合其工程特点,首先建立符合其工程特性的力学计算模型,引进突变理论与能量法原理,通过确定山区高桥墩-桩基结构体系的势函数和分叉集方程,建立山区高桥墩-桩基结构体系稳定性分析的尖点突变模型;然后通过分析山区高桥墩-桩基结构体系失稳条件,导出了高桥墩-桩基结构体系极限破坏荷载及其相应的墩顶水平位移计算公式;最后结合室内模型试验结果,对理论计算结果进行了对比分析。结果表明:试验结果与理论计算结果吻合较好,验证了该方法的合理性与可行性。

References

[1]  JTJ 024—85, Specifications for Design of Ground Base and Foundation of Highway Bridges and Culverts[S].
[2]  TIMOSHENKO S P.Elastic Stability Theory[M].Translated by ZHANG Fu-fan.Beijing:Science Press, 1958.
[3]  HEELIS M E, PAVLOVIC M N, WEST R P.The Analytical Prediction of the Buckling Loads of Fully and Partially Embedded Piles[J].Geotechnique, 2004, 54(6):363-373.
[4]  赵明华.桥梁桩基的屈曲分析及试验[J].中国公路学报, 1990, 3(4):47-56.
[5]  GABR M A, WANG J J, ZHAO M H.Buckling of Piles with General Power Distribution of Lateral Subgrade Reaction[J].Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(2):123-130.
[6]  PENG Xi-ding.Calculation of Critical Load of Pile Considering Resistance of Soil on the Side of Pile[J].China Civil Engineering Journal, 1996, 29(5):43-48.
[7]  LI Guo-hao.Bridge Structural Stability and Vibration[M].Beijing:China Railway Publishing House, 1996. 王钧利, 贺拴海.高墩大跨径弯桥在悬臂施工阶段刚构的非线性稳定分析[J].交通运输工程学报, 2006, 6(2):30-34.
[8]  岳鹏飞, 申爱琴, 祁秀林.桥台背路沉降理论计算[J].长安大学学报:自然科学版, 2006, 26(5):30-34.
[9]  程翔云.高桥墩设计计算中的两个问题[J].重庆交通学院学报, 2000, 19(2):34-36.
[10]  白青侠, 宋一凡.高桥墩几何非线性分析的能量法[J].西安公路交通大学学报, 2001, 21(2):50-52.
[11]  桑德斯P T.突变理论入门[M].凌复华, 译.上海:上海科学技术文献出版社, 1983.
[12]  THOMPSON J M T, SHAMROCK P A.Hyperbolic Umbilici Catastrophe in Crystal Fracture[J].Nature, 1976, 26(6):598-599.
[13]  JTJ 024—85, 公路桥涵地基与基础设计规范[S].
[14]  铁摩辛柯S P.弹性稳定理论[M].张福范, 译.北京:科学出版社, 1958.
[15]  DAVISSON M T, ROBINSON K E.Bending and Buckling Partially Embedded Piles[C]//ISSMFE.Proceeding of the 6th International Conference on Soil Mechanics and Foundation Engineering.Toronto:University of Toronto Press, 1965:243-246.
[16]  BUDKOWSKA B B, SZYMCZAK C.Initial Post-buckling Behavior of Piles Partially Embedded in Soil[J].Computers & Structures, 1997, 62(5):831-835.
[17]  ZHAO Ming-hua.Buckling Analysis and Tests of Bridge Piles[J].China Journal of Highway and Transport, 1990, 3(4):47-56.
[18]  彭锡鼎.考虑桩侧土壤弹性抗力时桩的临界荷载计算[J].土木工程学报, 1996, 29(5):43-48.
[19]  李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社, 1996.
[20]  WANG Jun-li, HE Shuan-hai.Nonlinear Stability Analysis of Long-span Curve Bridge with High Piers During Cantilever Construction[J].Journal of Traffic and Transportation Engineering, 2006, 6(2):30-34.
[21]  YUE Peng-fei, SHEN Ai-qin, QI Xiu-lin.Calculating Theory of Settlement of Bridge Approach Embankment[J].Journal of Changan University:Natural Science Edition, 2006, 26(5):30-34.
[22]  CHENG Xiang-yun.Two Problems in Design and Calculation of Higher Bridge Piers[J].Journal of Chongqing Jiaotong Institute, 2000, 19(2):34-36.
[23]  BAI Qing-xia, SONG Yi-fan.Energy Method for the Geometric Non-linear Analysis of Higher Bridge Piers[J].Journal of Xian Highway University, 2001, 21(2):50-52.
[24]  SAUNDERS P T.Entering of Catastrophe Theory[M].Translated by LING Fu-hua.Shanghai:Shanghai Scientific Technology and Literature Press, 1983.
[25]  CARPENTARIA A.A Catastrophe Theory Approach to Fracture Mechanics[J].Int J Frac, 1990, 44(1):57-69.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133