全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

r重a尺度正交平衡插值多小波的设计

DOI: 10.3724/SP.J.1004.2012.01996, PP. 1996-2004

Keywords: 正交多小波,插值性,平衡性,多尺度函数

Full-Text   Cite this paper   Add to My Lib

Abstract:

?研究了r重a尺度紧支撑正交平衡插值多小波,其中a≠r.所得的多尺度函数是正交平衡插值的,同时对应的多小波是正交插值的.首先,根据插值多小波的定义,利用取整函数这一技巧,得到关于r重a尺度插值条件的显式方程.其次,研究了a=2,r=3和a=2,r=4的紧支撑正交插值多小波,并构造了相应的实例.最后,利用Gram-Schmidt正交化方法讨论了a=3,r=4的正交插值多小波,并给出了算例.

References

[1]  Yang S Z. Compactly supported orthogonal interpolation multiwavelets and multiscaling functions. Acta Mathematica Sinica, 2005, 48(3): 565-572
[2]  Li R, Wu G C. The orthogonal interpolating balanced multiwavelet with rational coefficients. Chaos, Solitons and Fractals, 2009, 41(2): 892-899
[3]  Lebrun J, Vetterli M. Balanced multiwavelets theory and design. IEEE Transactions on Signal Processing, 1998, 46(4): 1119-1125
[4]  Lebrun J, Vetterli M. High order balanced multi-wavelets. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing. Seattle, USA: IEEE, 1998. 1529-1532
[5]  Mao Yi-bo. General cardinal multiwavelets. Journal of Chongqing University (Natural Science Edition), 2007, 30(4): 91-94(毛一波. 广义插值多小波. 重庆大学学报(自然科学版), 2007,30(4): 91-94)
[6]  Jiang Li, Zhu Shan-Hua, Lv Yong. Balancing of compactly supported interpolatory orthonormal multiwavelets with scale = a. Journal on Numerical Methods and Computer Applications, 2009, 30(1): 10-20(江力, 朱善华, 吕勇. a尺度紧支撑插值正交多小波的平衡性. 数值计算与计算机应用, 2009, 30(1): 10-20)
[7]  Li You-Fa, Yang Shou-Zhi. Construction of paraunitary symmetric matrix and parametrization of symmetric and orthogonal multiwavelets filter banks. Acta Mathematica Sinica, 2010, 53(2): 279-290(李尤发, 杨守志. 仿酉对称矩阵的构造及对称正交多小波滤波带的参数化. 数学学报, 2010, 53(2): 279-290)
[8]  Geronimo J S, Hardin D P, Massopust P R. Fractal functions and wavelet expansions based on several scaling functions. Journal of Approximation Theory, 1994, 78(3): 373-401
[9]  Yang Shou-Zhi, Liu Hua-Wei. Construction of M-band orthogonal symmetric interpolatory scaling functions with parameter. Numerical Mathematics——A Journal of Chinese Universities, 2010, 32(2): 173-178(杨守志, 刘华伟. M带含参数对称正交插值尺度函数的构造. 高等学校计算数学学报, 2010, 32(2): 173-178)
[10]  Yang Shou-Zhi, Liu Hua-Wei. Construction of orthogonal symmetric balanced multiscaling functions. Journal of Shantou University (Natural Science Edition), 2010, 22(2): 18-23(杨守志, 刘华伟. 正交对称平衡多尺度函数的构造. 汕头大学学报(自然科学版), 2010, 22(2): 18-23)
[11]  Yang Bo, Jing Zhong-Liang. Image fusion algorithm based on the quincunx-sampled discrete wavelet frame. Acta Automatica Sinica, 2010, 36(1): 12-33(杨波, 敬忠良. 梅花形采样离散小波框架图像融合算法. 自动化学报, 2010, 36(1): 12-33)
[12]  Yang S Z, Wang H Y. High-order balanced multi-wavelets with dilation factor a. Applied Mathematics and Computation, 2006, 181(1): 362-369
[13]  Yang Shou-Zhi, Peng Li-Zhong. The construction of orthogonal multi-scaling functions with high balance order based on PTST. Science in China Series E: Information Science, 2006, 36(6): 644-656(杨守志, 彭立中. 基于PTST方法构造高阶平衡的正交多尺度函数. 中国科学: E辑 信息科学, 2006, 36(6): 644-656)
[14]  Chen Jun-Li, Jiao Li-Cheng. Design of interpolating orthogonal multiwavelet. Journal of Electronics and Information Technology, 2004, 26(11): 1728-1732(陈俊丽, 焦李成. 正交插值多子波理论和构造. 电子与信息学报, 2004, 26(11): 1728-1732)
[15]  Lian J A, Chui C K. Analysis-ready multiwavelets (armlets) for processing scalar-valued signal. IEEE Signal Processing Letters, 2004, 11(2): 205-208
[16]  Yang Shou-Zhi, Yang Xiao-Zhong. Orthogonal multiscaling functions and multiwavelets with general cardinal property. Acta Mathematica Scientia, 2007, 27(3): 470-475(杨守志, 杨晓忠. 广义基插值的正交多尺度函数和多小波. 数学物理学报, 2007, 27(3): 470-475)
[17]  Yang Shou-Zhi, Cao Fei-Long. Orthogonal balanced multi-wavelet with multiplicity r and dilation factor a. Progress in Natural Science, 2005, 16(2): 177-182(杨守志, 曹飞龙. 伸缩因子为a的r重正交平衡的多小波. 自然科学进展, 2005, 16(2): 177-182)
[18]  Cong Xue-Rui, Cui Li-Hong. Construction of interpolatory multiscaling functions with high approximation order. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2008, 35(4): 108-112(丛雪瑞, 崔丽鸿. 具有高逼近阶的插值多尺度函数的构造. 北京化工大学学报(自然科学版), 2008, 35(4): 108-112)
[19]  Li Y F, Yang S Z. Explicit construction of symmetric orthogonal wavelet frames in l2(Rs). Journal of Approximation Theory, 2010, 162(5): 891-909
[20]  Xie C Z, Yang S Z. Construction of refinable function vector via GTST. Applied Mathematics and Computation, 2007, 194(2): 425-430
[21]  Yang S Z, Huang Y D. Construction of a class of compactly supported symmetric and balanced refinable function vector by GTST. Applied Mathematics and Computation, 2009 207(1): 83-89
[22]  Li De-Qiang, Wu Yong-Guo, Luo Hai-Bo. Redundant DWT based signal registration and classification. Acta Automatica Sinica, 2011, 37(1): 61-66(李德强, 吴永国, 罗海波. 基于冗余离散小波变换的信号配准及分类. 自动化学报, 2011, 37(1): 61-66)
[23]  Wu Xiu-Yong, Xu Ke, Xu Jin-Wu. Automatic recognition method of surface defects based on Gabor wavelet and kernel locality preserving projections. Acta Automatica Sinica, 2010, 36(3): 438-442(吴秀永, 徐科, 徐金梧. 基于Gabor小波和核保局投影算法的表面缺陷自动识别方法. 自动化学报, 2010, 36(3): 438-442)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133