全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

噪声环境下时滞多智能体系统的非线性编队控制

DOI: 10.3724/SP.J.1004.2014.02959, PP. 2959-2967

Keywords: 编队控制,多智能体系统,时滞,噪声

Full-Text   Cite this paper   Add to My Lib

Abstract:

?研究了噪声环境下具有向网络拓扑结构的时滞多智能体系统的非线性编队控制问题.首先,建立了一类随机时滞微分方程的稳定性理,并提出了三类含多层领导者的非线性编队控制协议,即时不变编队、时变编队以及时变编队轨迹追踪;其次,基于上述稳定性理论给出了这三类编队控制协议分别引导受控系统实现均方指数稳定和几乎必然指数稳定的充分性条件;最后,给出的仿真实例进一步验证了文中理论结果的有效性.

References

[1]  Hong Y G, Hu J P, Gao L X. Tracking control for multi-agent consensus with an active leader and variable topology. Automatica, 2006, 42(7): 1177-1182
[2]  Lu J Q, Ho D W C, Kurths J. Consensus over directed static networks with arbitrary finite communication delays. Physical Review E, 2009, 80(6): 066121
[3]  Qin J H, Zheng W X, Gao H J. Consensus of multiple second-order vehicles with a time-varying reference signal under directed topology. Automatica, 2011, 47(9): 1983-1991
[4]  Qin J H, Gao H J, Zheng W X. Second-order consensus for multi-agent systems with switching topology and communication delay. Systems & Control Letters, 2011, 60(6): 390-397
[5]  Oh K K, Ahn H S. Formation control of mobile agents based on inter-agent distance dynamics. Automatica, 2011, 47(10): 2306-2312
[6]  Xue D, Yao J, Chen G R, Yu Y L. Formation control of networked multi-agent systems. IET Control Theory & Applications, 2010, 4(10): 2168-2176
[7]  Dimarogonas D V, Johansson K H. Stability analysis for multi-agent systems using the incidence matrix: quantized communication and formation control. Automatica, 2010, 46(4): 695-700
[8]  Kan Z, Dani A P, Shea J M, Dixon W E. Network connectivity preserving formation stabilization and obstacle avoidance via a decentralized controller. IEEE Transactions on Automatic Control, 2012, 57(7): 1827-1832
[9]  Khosravi S, Jahangir M, Afkhami H. Adaptive fuzzy SMC-based formation design for swarm of unknown time-delayed robots. Nonlinear Dynamics, 2012, 69(4): 1825-1835
[10]  Lafferriere G, Williams A, Caughman J, Veerman J J P. Decentralized control of vehicle formations. Systems & Control Letters, 2005, 54(9): 899-910
[11]  Sakurama K, Nakano K. Formation control with velocity assignment for second-order multi-agent systems with heterogeneous time-delays. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference. Orlando, USA: IEEE, 2011. 765-770
[12]  Liu X, Kumar K D. Network-based tracking control of spacecraft formation flying with communication delays. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2302-2314
[13]  Sun Y Z, Ruan J. Synchronization in coupled time-delayed systems with parameter mismatch and noise perturbation. Chaos, 2009, 19(4): 043113
[14]  Lu X Q, Chen S H, Lü J H. Finite-time tracking for double-integrator multi-agent systems with bounded control input. IET Control Theory & Applications, 2013, 7(11): 1562-1573
[15]  Mao X. Robustness of exponential stability of stochastic differential delay equations. IEEE Transactions on Automatic Control, 1996, 41(3): 442-447
[16]  Yu W W, Chen G R, Lü J H. On pinning synchronization of complex dynamical networks. Automatica, 2009, 45(2): 429-435
[17]  Cao Y C, Stuart D, Ren W, Meng Z Y. Distributed containment control for multiple autonomous vehicles with double-integrator dynamics: algorithms and experiments. IEEE Transactions on Control Systems Technology, 2011, 19(4): 929-938
[18]  Xiao F, Wang L, Chen T W. Connectivity preservation for multi-agent rendezvous with link failure. Automatica, 2012, 48(1): 25-35
[19]  Su H S, Wang X F, Lin Z L. Flocking of multi-agents with a virtual leader. IEEE Transactions on Automatic Control, 2009, 54(2): 293-307
[20]  Cao Y C, Ren W. Distributed formation control for fractional-order systems: dynamic interaction and absolute/relative damping. Systems & Control Letters, 2010, 59(3-4): 233-240
[21]  Xiao F, Wang L, Chen J, Gao Y P. Finite-time formation control for multi-agent systems. Automatica, 2009, 45(11): 2605-2611
[22]  Hengster-Movri? K, Bogdan S, Draganjac I. Multi-agent formation control based on bell-shaped potential functions. Journal of Intelligent and Robotic Systems, 2010, 58(2): 165-189
[23]  Franovi? I, Todorovi? K, Vasovi? N, Buri? N. Spontaneous formation of synchronization clusters in homogenous neuronal ensembles induced by noise and interaction delays. Physical Review Letters, 2012, 108(9): 094101
[24]  Lu X Q, Lu R Q, Chen S H, Lü J H. Finite-time distributed tracking control for multi-agent systems with a virtual leader. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60(2): 352-362
[25]  Shao J, Xie G, Wang L. Leader-following formation control of multiple mobile vehicles. IET Control Theory & Application, 2007, 1(3): 545-552
[26]  Ren W. Consensus based formation control strategies for multi-vehicle systems. In: Proceeding of the 2006 American Control Conference. Minneapolis, Minnesota, USA: IEEE, 2006. 4237-4242
[27]  Liu Y, Jia Y M. An iterative learning approach to formation control of multi-agent systems. Systems & Control Letters, 2012, 61(1): 148-154
[28]  Li T, Zhang J F. Mean square average-consensus under measurement noises and fixed topologies: necessary and sufficient conditions. Automatica, 2009, 45(8): 1929-1936
[29]  Hu J P, Feng G. Distributed tracking control of leader-follower multi-agent systems under noisy measurement. Automatica, 2010, 46(8): 1382-1387
[30]  Lu X Q, Austin F, Chen S H. Formation control for second-order multi-agent systems with time-varying delays under directed topology. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(3): 1382-1391
[31]  Liu X W, Chen T P. Synchronization analysis for nonlinearly-coupled complex networks with an asymmetrical coupling matrix. Physica A, 2008, 387(16-17): 4429-4439
[32]  Horn R A, Johnson C R. Matrix Analysis. Cambridge: Cambridge University Press, 1985.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133