全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于边膨胀图的压缩感知理论

DOI: 10.3724/SP.J.1004.2014.02824, PP. 2824-2835

Keywords: 压缩感知,边膨胀图,非均匀采样,邻接矩阵,稀疏重建

Full-Text   Cite this paper   Add to My Lib

Abstract:

?膨胀图(Expandergraphs,EG)理论与压缩感知(Compressivesensing,CS)理论相结合是近几年发展起来的一个新方向,其优点在于能设计出具有确定结构的0-1测量矩阵,且可根据膨胀图的结构协同设计重建算法,相当于在重建算法中引入了先验知识,能更快更准确地重构出稀疏信号.本文从非均匀采样的必要性和合理性分析出发,在已有的膨胀图压缩感知理论基础上,将膨胀图的定义拓展到左顶点度数不相等的边膨胀图,并建立起边膨胀图邻接矩阵与有限等距性质(Restrictedisometryproperty,RIP)条件之间的联系,又进一步给出了边膨胀图邻接矩阵的列相关系数的上限值.同时根据边膨胀图的特性,协同设计了两种压缩感知重建算法.通过仿真实验对比边膨胀图代表的非均匀采样模式与现有膨胀图代表的均匀采样模式,以及本文设计的算法与传统算法在重建稀疏信号上的性能,实验结果验证了边膨胀图压缩感知理论的有效性.

References

[1]  Candés E J. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique, 2008, 346(9-10): 589-592
[2]  Fang Hong, Yang Hai-Rong. Greedy algorithms and compressed sensing. Acta Automatica Sinica, 2011, 37(12): 1413-1421(方红, 杨海蓉. 贪婪算法与压缩感知理论. 自动化学报, 2011, 37(12): 1413-1421)
[3]  Song Xiao-Xia, Shi Guang-Ming. Fewer Bernoulli measurements satisfying the constraint of reconstruction probability. Acta Automatica Sinica, 2013, 39(1): 53-56(宋晓霞, 石光明. 满足重构概率约束的更少贝努利观测. 自动化学报, 2013, 39(1): 53-56)
[4]  Lian Qiu-Sheng, Chen Shu-Zhen. Image reconstruction for compressed sensing based on the combined sparse image representation. Acta Automatica Sinica, 2010, 36(3): 385-391(练秋生, 陈书贞. 基于混合基稀疏图像表示的压缩传感图像重构. 自动化学报, 2010, 36(3): 385-391)
[5]  Jafarpour S, Xu W, Hassibi B, Calderbank R. Efficient and robust compressed sensing using optimized expander graphs. IEEE Transactions on Information Theory, 2009, 55(9): 4299-4308
[6]  Haupt J, Bajwa W, Rabbat M, Nowak R. Compressed sensing for networked data. IEEE Signal Processing Magazine, 2008, 25(2): 92-101
[7]  Jacques L, Hammond D, Fadili M. Dequantizing compressed sensing: when oversampling and non-Gaussian constraints combine. IEEE Transactions on Information Theory, 2011, 57(1): 559-571
[8]  Candés E J, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problem, 2007, 23(3): 969-985
[9]  Sipser M, Spielman D A. Expander codes. IEEE Transactions on Information Theory, 1996, 42(6): 1710-1722
[10]  Wang M, Xu W, Tang A. A unique "nonnegative" solution to an underdetermined system: from vectors to matrices. IEEE Transactions on Signal Processing, 2011, 59(3): 1007 -1016
[11]  Berinde R, Indyk P. Sequential sparse matching pursuit. In: Proceedings of the 47th Annual Allerton Conference on Communication, Control and Computing. Monticello, IL, USA: IEEE, 2009. 36-43
[12]  Tsaig Y, Donoho D L. Extensions of compressed sensing. Signal Processing, 2006, 86(3): 549-571
[13]  Tropp J, Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666
[14]  Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306
[15]  Li Shu-Tao, Wei Dan. A survey on compressive sensing. Acta Automatica Sinica, 2009, 35(11): 1369-1377(李树涛, 魏丹. 压缩传感综述. 自动化学报, 2009, 35(11): 1369- 1377)
[16]  Candés E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Transactions on Information Theory, 2006, 52(12): 5406- 5425
[17]  Candés E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete fourier information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509
[18]  Blanchard J, Tanner J. Gpu accelerated greedy algorithms for compressed sensing. Mathematical Programming Computation, 2013, 5(3): 267-304
[19]  Xu W, Hassibi B. Efficient compressed sensing with deterministic guarantees using expander graphs. In: Proceedings of the 2007 IEEE Information Theory Workshop. Lake Tahoe, USA: IEEE, 2007. 414-419
[20]  Xu W, Hassibi B. Further results on performance analysis for compressive sensing using expander graphs. In: Proceedings of the 41st Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, USA: IEEE, 2007. 621-625
[21]  Liu Y, Zhu X Q, Zhang L, Cho S H. Expanding window compressed sensing for non-uniform compressible signals. Sensors, 2012, 12: 13034-13057
[22]  Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory, 2006, 52(1): 6- 18
[23]  Guruswami V, Umans C, Vadhan S. Unbalanced expanders and randomness extractors from Parvaresh-Vardy codes. In: Proceedings of the 22nd Annual IEEE Conference on Computational Complexity. San Diego, USA: IEEE, 2007. 96- 108
[24]  Sun M J, Feng N Z, Shen Y, Shen X L, Ma L Y, Li J G, Wu Z H. Photoacoustic imaging method based on arc-direction compressed sensing and multi-angle observation. Optics Express, 2011, 19(16): 14801-14806
[25]  Bath B, Tanner J. Vanishingly sparse matrices and expander graphs, with application to compressed sensing [Online], available: http://arxiv.org/abs/1207.3094, July 24, 2013
[26]  Tibshirani R. Regression shrinkage and selection via the Lasso. Journal Royal Statistical B, 1996, 58(1): 267-288
[27]  Chen S B, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61
[28]  Baraniuk R. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-121

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133