全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

含有平面结构场景的捆绑调整

DOI: 10.3724/SP.J.1004.2014.01601, PP. 1601-1611

Keywords: 捆绑调整,三维重建,L-M(Levenberg-Marquardt)方法,稀疏方程求解

Full-Text   Cite this paper   Add to My Lib

Abstract:

?捆绑调整是计算机视觉中三维结构恢复过程的重要步骤.捆绑调整通常将空间中点与点坐标的调整视为相互独立的过程,但是在包含有自然物和人工物的场景中,由于存在多余的自由度,这种调整方法会导致优化结果偏离真值.提出了一种带有共面约束和平面夹角约束的捆绑调整,用于优化带有平面的场景.借助新的参数化方法,共面约束和夹角约束可以方便地进行表示,并且带有这两类约束的捆绑调整求解过程,仍然是一个无约束的非线性最小二乘问题.实验结果表明,这种带有先验信息的捆绑调整提供了对结构的更准确估计.由于先验信息的加入,增强型法方程的维度变高,借助了稀疏的求解技术和预条件子方法,大大降低了求解时间.最后,为了在实际应用中能够自动寻找出夹角约束,提出了一种基于最大完全图的贪心方法,该方法尽可能多地保留了夹角约束.

References

[1]  Wong K H, Chang M M Y. 3D model reconstruction by constrained bundle adjustment. In: Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK: IEEE, 2004, 3: 902-905
[2]  B?rlin N, Grussenmeyer P, Eriksson J, Lindstrom P. Pros and cons of constrained and unconstrained formulation of the bundle adjustment problem. In: International Archives of ISPRS, 2004, XXXV(B3): 589-594
[3]  Shan Y, Liu Z C, Zhang Z Y. Model-based bundle adjustment with application to face modeling. In: Proceedings of the 8th IEEE International Conference on Computer Vision. Vancouver, Canada: IEEE, 2001, 2: 644-651
[4]  Bartoli A, Sturm P. Constrained structure and motion from multiple uncalibrated views of a piecewise planar scene. International Journal of Computer Vision, 2003, 52(1): 45-64
[5]  Gerke M. Using horizontal and vertical building structure to constrain indirect sensor orientation. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(3): 307-316
[6]  Hartley R I, Zisserman A. Multiple View Geometry in Computer Vision. Cambridge: Cambridge University Press, 2004
[7]  Triggs B, McLauchlan P F, Hartley R I, Fitzgibbon A W. Bundle adjustment-a modern synthesis. In: Proceedings of the International Workshop on Vision Algorithms: Theory and Practice. London, UK: IEEE, 2000. 298-372
[8]  Wedderburn J H M. Lectures on Matrices. Providence: American Mathematical Society, 1934
[9]  Toldo R, Fusiello A. Robust multiple structures estimation with J-linkage. In: Proceedings of the 10th European Conference on Computer Vision: Part I. Marseille. France: Springer-Verlag, 2008. 537-547
[10]  Torr P H S, Zisserman A. MLESAC: a new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding, 2000, 78(1): 138-156
[11]  Lhuillier M. Fusion of GPS and structure-from-motion using constrained bundle adjustments. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA: IEEE, 2011. 3025-3032
[12]  Di K, Xu F, Li R. Constrained bundle adjustment of panoramic stereo images for Mars landing site mapping. In: Proceedings of the 4th International Symposium on Mobile Mapping Technology. Kunming, China: MMT, 2004. 29-31
[13]  Zhou Z H, Jin H L, Ma Y. Robust plane-based structure from motion. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Rhode Island, USA: IEEE, 2012. 1482-1489
[14]  Fua P. Regularized bundle-adjustment to model heads from image sequences without calibration data. International Journal of Computer Vision, 2000, 38(2): 153-171
[15]  Szeliski R, Torr P H S. Geometrically constrained structure from motion: points on planes. Lecture Notes in Computer Science, 1998, 1506: 171-186
[16]  McGlone J C. Bundle adjustment with geometric constraints for hypothesis evaluation. sl ISPRS Journal of Photogrammetry and Remote Sensing, 1996. B3-III529-534
[17]  Timothy A D. Direct Methods for Sparse Linear Systems. Philadelphia: Society for Industrial and Applied Mathematics, 2006
[18]  Rotkin V, Toledo S. The design and implementation of a new out-of-core sparse cholesky factorization method. ACM Transactions on Mathematical Software, 2004, 30(1): 19-46

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133