全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于局部连续性与全局相似性的光谱保持型亚像元映射

DOI: 10.3724/SP.J.1004.2014.01612, PP. 1612-1622

Keywords: 亚像元映射,像元分解,局部连续性,全局相似性,光谱保持

Full-Text   Cite this paper   Add to My Lib

Abstract:

?遥感图像的像元级分类精度受混合像元的影响.亚像元映射以像元分解获得的丰度值为基础,在地物分布规律的约束下,细化估计各类地物的亚像元级分布模式.本文同时考虑了地物分布的空间与光谱信息,提出了一种基于局部连续性与全局相似性的光谱保持型亚像元映射算法.针对地物的空间分布特性,提出了利用类内离散度对局部连续性进行建模,并通过相似分布像元表示误差引入全局相似性约束项.针对地物的光谱特性,采用最小化光谱误差约束了亚像元映射过程中的光谱无失真性.模拟数据与真实数据上的实验结果表明,本文算法比其他同类算法具有更高的估计精度,且更适合于实际应用.

References

[1]  Yu Yue, Sun Wei-Dong. Target spectra guided spectral unmixing for hyperspectral images. Chinese High Technology Letters, 2012, 22(3): 240-248 (于钺, 孙卫东. 目标光谱指导下的高光谱图像混合像元分解方法. 高技术通讯, 2012, 22(3): 240-248)
[2]  Zhu F Y, Wang Y, Xiang S M, Fan B, Pan C H. Structured sparse method for hyperspectral unmixing. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 88: 101-118
[3]  Atkinson P M. Issues of uncertainty in super-resolution mapping and their implications for the design of an inter-comparison study. International Journal of Remote Sensing, 2009, 30(20): 5293-5308
[4]  Mertens K C, De Baets B, Verbeke L P C, De Wulf R R. Direct sub-pixel mapping exploiting spatial dependence. In: Proceedings of IEEE International Symposium on Geoscience and Remote Sensing. New York, USA: IEEE, 2004, 5: 3046-3049
[5]  Mertens K C, Verbeke L P C, Ducheyne E I, De Wulf R R. Using genetic algorithms in sub-pixel mapping. International Journal of Remote Sensing, 2003, 24(21): 4241-4247
[6]  Villa A, Chanussot J, Benediktsson J A, Jutten C. Spectral unmixing for the classification of hyperspectral images at a finer spatial resolution. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 521-533
[7]  Zhong Y F, Zhang L P. Remote sensing image subpixel mapping based on adaptive differential evolution. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2012, 42(5): 1306-1329
[8]  Pan Z X, Yu J, Huang H J, Hu S X, Zhang A W, Ma H B, Sun W D. Super-resolution based on compressive sensing and structural self-similarity for remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9): 4864-4876
[9]  Congalton R G, Green K. Assessing the Accuracy of Remote Sensed Data: Principles and Pratices. New York: Lewis Publishers, 1999
[10]  Bioucas-Dias J M, Plaza A, Dobigeon N, Parente M, Du Q, Gader P, Chanussot J. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354-379
[11]  Atkinson P M. Mapping sub-pixel boundaries from remote sensed images. In: Proceedings of the Innovations in GIS 4. London, UK: Taylor & Francis, 1997. 166-180
[12]  Muad A M, Foody G M. Super-resolution mapping of lakes from imagery with a coarse spatial and fine temporal resolution. International Journal of Applied Earth Observation and Geoinformation, 2012, 15: 79-91
[13]  Boucher A, Kyriakidis P C, Cronkite-Ratcliff C. Geostatistical solutions for super-resolution land cover mapping. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 272-283
[14]  Mertens K C, de Baets B, Verbeke L P C, de Wulf R R. A sub-pixel mapping algorithm based on sub-pixel/pixel spatial attraction models. International Journal of Remote Sensing, 2006, 27(15): 3293-3310
[15]  Verhoeye J, De Wulf R. Land cover mapping at sub-pixel scales using linear optimization techniques. Remote Sensing of Environment, 2002, 79(1): 96-104
[16]  Atkinson P M. Sub-pixel target mapping from soft-classified, remotely sensed imagery. Photogrammetric Engineering and Remote Sensing, 2005, 71(7): 839-846
[17]  Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, Teller E. Equation of state calculations by fast computing machines. Journal of Physics, 1958, 21: 1087-1092
[18]  Dong W S, Zhang D, Shi G M, Wu X L. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Transactions on Image Processing, 2011, 20(7): 1838-1857
[19]  Cohen J. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 1960, 20: 37-46

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133