全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

双层预测控制中保证动态控制可行的稳态目标计算策略

DOI: 10.3724/SP.J.1004.2014.02108, PP. 2108-2114

Keywords: 模型预测控制,不一致性,吸引域,稳态目标计算,动态控制

Full-Text   Cite this paper   Add to My Lib

Abstract:

?在双层结构模型预测控制(Modelpredictivecontrol,MPC)中,稳态目标计算(Steady-statetargetscalculation,SSTC)层(上层)为动态控制(Dynamiccontrol,DC)层(下层)提供操作变量、被控变量设定值和变量约束.但是,上层可行域和下层吸引域间存在的不一致性可能使得上层给出的设定值无法实现.本文为下层事先选取若干组放松的软约束,并对每一组软约束都离线计算出相应的吸引域,其中最大的一个吸引域包含稳态目标计算的可行域.在控制过程中,根据当前状态所属吸引域在线地决定在DC层采用的软约束组.采用上述方法后,对所有处于最大吸引域的初始状态,在跟踪稳态目标的过程中,下层优化问题都是可行的.仿真算例证明了该方法的有效性.

References

[1]  Xi Yu-Geng, Li De-Wei, Lin Shu. Model predictive control-status and challenges. Acta Automatica Sinica, 2013, 39(3): 222-236 (席裕庚, 李德伟, 林姝. 模型预测控制——-现状与挑战. 自动化学报, 2013, 39(3): 222-236)
[2]  Zou Tao, Wei Feng, Zhang Xiao-Hui. Strategy of centralized optimization and decentralized control for two-layered predictive control in large-scale industrial system. Acta Automatica Sinica, 2013, 39(8): 1366-1373 (邹涛, 魏峰, 张小辉. 工业大系统双层结构预测控制的集中优化与分散控制策略. 自动化学报, 2013, 39(8): 1366-1373)
[3]  Ying C M, Joseph B. Performance and stability analysis of LP-MPC and QP-MPC cascade control systems. AIChE Journal, 2009, 45(7): 1521-1534
[4]  Nikandrov A, Swartz C L E. Sensitivity analysis of LP-MPC cascade control systems. Journal of Process Control, 2009, 19(1): 16-24
[5]  Scattolini R. Architectures for distributed and hierarchical model predictive control ——- a review. Journal of Process Control, 2009, 19(5): 723-731
[6]  Zou Tao. Offset-free strategy by double-layered linear model predictive control. Journal of Applied Mathematics, 2012, Article ID 808327, DOI: 10.1155/2012/808327
[7]  Zou Tao, Li Hai-Qiang. Two-layer predictive control of multi-variable sustem with integrating element. Journal of Zhejiang University (Engineering Science), 2011, 45(12): 2079-2087 (邹涛, 李海强. 具有积分环节多变量系统的双层结构预测控制. 浙江大学学报(工学版), 2011, 45(12): 2079-2087)
[8]  Limon D, Alvarado I, Alamo T, Camacho E F. MPC for tracking piecewise constant references for constrained linear systems. Automatica, 2008, 44(9): 2382-2387
[9]  Blanchini F, Miani S. Any domain of attraction for a linear constrained system is a tracking domain of attraction. SIAM Journal of Control and Optimization, 2000, 38(3): 971-994
[10]  Blanchini F. Set invariance in control. Automatica, 1999, 35(11): 1747-1767
[11]  Kvasnica M, Grieder P, Baotic M, Morari M. Multi-Parametric Toolbox (MPT). [Online], available: http:// people.ee.ethz.ch/~mpt/2/downloads/, May, 20, 2013
[12]  Xi Yu-Geng, Li De-Wei. Fundamental philosophy and status of qualitative synthesis of model predictive control. Acta Automatica Sinica, 2008, 34(10): 1225-1234 (席裕庚, 李德伟. 预测控制定性综合理论的基本思路和研究现状. 自动化学报, 2008, 34(10): 1225-1234)
[13]  Darby M L, Nikolaou M. MPC: Current practice and challenges. Control Engineering Practice, 2012, 20(4): 328-342
[14]  Zou Tao. The Steady State Optimization and Dynamic Control of Constrained Multivariable Systems [Ph.D. dissertation], Shanghai Jiao Tong University, China, 2007 (邹涛. 多变量有约束控制系统的稳态优化与动态控制 [博士学位论文], 上海交通大学, 中国, 2007)
[15]  Rao C V, Rawlings J B. Steady states and constraints in model predictive control. AIChE Journal, 1999, 45(6): 1266 -1278
[16]  Kassmann D E, Badgwell T A, Hawkins R B. Robust steady-state target calculation for model predictive control. AIChE Journal, 2000, 46(5): 1007-1024
[17]  Rawlings J B, Amrit R. Optimizing process economic performance using model predictive control. In: Proceedings of the 2008 Nonlinear Model Predictive Control Lecture Notes in Control and Information Sciences. Berlin Heidelberg, Germany: Springer, 2008, 384: 119-138
[18]  Mayne D Q, Rawlings J B, Rao C V, Scokaert P O M. Constrained model predictive control: stability and optimality. Automatica, 2000, 36(6): 789-814
[19]  Muske K R. Steady-state target optimization in linear model predictive control. In: Proceedings of the 1997 American Control Conference. Albuquerque, NM: IEEE, 1997, 6: 3597 -3601
[20]  Pluymers B, Rossiter J A, Suykens J A K, Moor B D. The efficient computation of polyhedral invariant sets for linear systems with polytopic uncertainty. In: Proceedings of the 2005 American Control Conference. Portland, OR: IEEE, 2005, 2: 804-809
[21]  Kerrigan E C. Robust Constraint Satisfaction——Invariant Sets and Predictive Control [Ph.D. dissertation], Cambridge University, USA, 2000

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133