全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于泡沫尺寸随机分布的铜粗选药剂量控制

DOI: 10.3724/SP.J.1004.2014.02089, PP. 2089-2097

Keywords: 铜粗选,泡沫尺寸分布,药剂量控制,概率密度函数,最小二乘支持向量机模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

?为了稳定铜粗选选矿指标,提高矿产资源的利用水平,根据铜粗选过程中泡沫尺寸分布随药剂量改变而动态变化的特点,提出一种基于泡沫尺寸随机分布的铜粗选过程药剂量控制方法.首先,针对泡沫尺寸分布具有非高斯统计特性,基于方差和均值的统计参量难以表征该分布形态变化的问题,提出了B样条估计方法以描述泡沫尺寸的概率密度函数(Probabilitydensityfunction,PDF);然后,针对B样条权值相互关联的特点,建立多输出最小二乘支持向量机模型(Multi-outputleastsquaresupportvectormachine,MLS-SVM)以表征权值和药剂量的动态关系;最后,为减少系统的随机性,采用基于熵的优化算法以确定药剂量,实现对给定泡沫尺寸分布的跟踪控制.工业数据仿真验证了所提方法的有效性,能有效稳定铜粗浮选的生产指标.

References

[1]  Naik P K, Reddy P, Misra V N. Interpretation of interaction effects and optimization of reagent dosages for fine coal flotation. International Journal of Mineral Processing}, 2005, 75(1): 83-90
[2]  Bergh L G, Yianatos J B. The long way toward multivariate predictive control of flotation processes. Journal of Process Control, 2011, 21(2): 226-234
[3]  Neethling S J, Lee H T, Cilliers J J. Simple relationships for predicting the recovery of liquid from flowing foams and froths. Minerals Engineering, 2003, 16(11): 1123-1130
[4]  Grau R A, Heiskanen K. Bubble size distribution in laboratory scale flotation cells. Minerals Engineering, 2005, 18(12): 1164-1172
[5]  Cho Y S, Laskowski J S. Effect of flotation frothers on bubble size and foam stability. International Journal of Mineral Processing, 2002, 64(2): 69-80
[6]  Wang H. Bounded Dynamic Stochastic Systems: Modelling and Control. London: Springer, 2000.
[7]  Yi Y, Guo L, Wang H. Constrained PI tracking control for output probability distributions based on two-step neural networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 2009, 56(7): 1416-1426
[8]  Xu C H, Gui W H, Yang C H, Zhu H Q, Lin Y Q, Shi C. Flotation process fault detection using output PDF of bubble size distribution. Minerals Engineering, 2012, 26: 5-12
[9]  Gui Wei-Hua, Yang Chun-Hua, Xu De-Gang, Lu Ming, Xie Yong-Fang. Machine-vision-based online measuring and controlling technologies for mineral flotation-a review. Acta Automatica Sinica, 2013, 39(11): 1879-1888 (桂卫华, 阳春华, 徐德刚, 卢明, 谢永芳. 基于机器视觉的矿物浮选过程监控技术研究进展. 自动化学报, 2013, 39(11): 1879-1888)
[10]  Wang W, Bergholm F, Yang B. Froth delineation based on image classification. Minerals Engineering, 2003, 16(11): 1183-1192
[11]  Liu J J, MacGregor J F, Duchesne C, Bartolacci G. Flotation froth monitoring using multiresolutional multivariate image analysis. Minerals Engineering, 2005, 18(1): 65-76
[12]  Forbes G. Texture and Bubble Size Measurements for Modelling Concentrate Grade in Flotation Froth Systems [Ph. D. dissertation], University of Cape Town, South Africa, 2007
[13]  Xu S, An X, Qiao X D, Zhu L J, Li L. Multi-output least-squares support vector regression machines. Pattern Recognition Letters, 2013, 34(9): 1078-1084
[14]  Guo X C, Yang J H, Wu C G, Wang C Y, Liang Y C. A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing, 2008, 71(16): 3211-3215
[15]  Guo L, Wang H. Minimum entropy filtering for multivariate stochastic systems with non-Gaussian noises. IEEE Transactions on Automatic Control, 2006, 51(4): 695-700
[16]  Hodouin D, Bazin C, Gagnon E, Flament F. Feedforward-feedback predictive control of a simulated flotation bank. Power Technology, 2000, 108(2): 173-179
[17]  Suichies M, Leroux D, Dechert C, Trusiak A. An implementation of generalized predictive control in a flotation plant. Control Engineering Practice, 2000, 8(3): 319-325
[18]  Aldrich C, Feng D. The effect of mothers on bubble size distributions in flotation pulp phases and surface froths. Minerals Engineering, 2000, 13(10): 1049-1057
[19]  Yang C H, Xu C H, Gui W H, Du J J. Nonparametric density estimation of bubble size distribution for monitoring mineral flotation process. In: Proceedings of the 48th IEEE Conference on Decision and Control and the 28th Chinese Control Conference. Shanghai, China: IEEE, 2009. 2941-2945
[20]  Guo L, Wang H. Stochastic Distribution Control System Design. London: Springer-Verlag, 2010.
[21]  Forbes M G, Guay M, Forbes J F. Control design for first-order processes: shaping the probability density of the process state. Journal of Process Control, 2004, 14(4): 399-410
[22]  Liu J P, Gui W H, Tang Z H, Yang C H, Zhu J Y, Li J Q. Recognition of the operational statuses of reagent addition using dynamic bubble size distribution in copper flotation process. Minerals Engineering, 2013, 45: 128-141
[23]  Xi Yu-Geng, Li De-Wei, Lin Shu. Model predictive control-status and challenges. Acta Automatica Sinica, 2013, 39(3): 222-236 (席裕庚, 李德伟, 林姝. 模型预测控制——-现状与挑战. 自动化学报, 2013, 39(3): 222-236)
[24]  Wang W X, Li L. Image analysis and computer vision for mineral froth. IEEE International Conference Mechatronics and Automation, 2005, 4: 1790-1795
[25]  Bonifazi G, Serranti S, Volpe F, Zuco R. Characterisation of flotation froth colour and structure by machine vision. Computers & Geosciences, 2001, 27(9): 1111-1117
[26]  Runge K, McMaster J, Wortley M, La Rosa D, Gu O. A correlation between visiofrothm TM measurements and the performance of a flotation cell. In: Proceedings of the Ninth Mill Operators' Conference. Fremantle, Western Austalia: 2007. 19-21
[27]  Zong Z, Lam K Y. Estimation of complicated distributions using B-spline functions. Structural Safety, 1998, 20(4): 341-355
[28]  Han Z Y, Liu Y, Zhao J, Wang W. Real time prediction for converter gas tank levels based on multi-output least square support vector regressor. Control Engineering Practice, 2012, 20(12): 1400-1409
[29]  Wang H. Minimum entropy control of non-Gaussian dynamic stochastic systems. IEEE Transactions on Automatic Control, 2002, 47(2): 398-403

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133