全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于局部流形结构的无监督特征学习方法

DOI: 10.3724/SP.J.1004.2014.02253, PP. 2253-2261

Keywords: 流形学习,拉普拉斯特征图,局部线性嵌入(LLE),特征选择

Full-Text   Cite this paper   Add to My Lib

Abstract:

?无监督特征选择是统计模式识别领域中的基础问题,在过去数十年里一直受到重视.近年来,很多工作将特征选择归结为带有离散约束的非线性降维问题.这方面的研究采用数据服从流形分布的假设并强调运用流形学习技术.许多现有的特征选择方法运用图拉普拉斯的基本性质选择能够最大限度地保留数据流形的特征,例如SPEC(图拉普拉斯上的谱分解)、TR准则(迹比)、MSFS(多聚类特征选择)以及EVSC(特征值敏感准则).本文从另一类流形学习算法出发,提出了基于局部线性嵌入(LLE)的新算法.基于LLE特征选择的主要难点是求解带有二次规划和特征值分解的优化问题.我们证明了在特征选择问题中,LLE的目标函数可以按照维数分解,这有助于采用主成分分析(PCA)构造更好的特征.根据这些结果,本文提出了一种新的无监督特征选择算法LLS,它首先从LLE中计算样本间的局部关系,然后用这些关系估计每个特征对内在流形结构的贡献.这些贡献被表示为LLS评分、排序并作为特征选择的依据.我们还提出了一种推广LLS的局部线性旋转选择算法.在一些数据集上的实验结果说明了本文算法比基于拉普拉斯特征图的算法更有效.

References

[1]  Zhao Z, Wang L, Liu H, Ye J P. On similarity preserving feature selection. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(3): 619-632
[2]  Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003, 15(6): 1373-1396
[3]  Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323- 2326
[4]  Cai D, Zhang C Y, He X F. Unsupervised feature selection for multi-cluster data. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'10). New York, NY, USA: ACM, 2010. 333-342
[5]  Zhao Z, Liu H. Semi-supervised feature selection via spectral analysis. In: Proceedings of the 2007 SIAM International Conference on Data Mining. Minneapolis, Minnesota: SIAM, 2007. 26-28
[6]  Nie F P, Xiang S M, Jia Y Q, Zhang C S, Yan S C. Trace ratio criterion for feature selection. In: Proceedings of the 23rd National Conference on Artificial Intelligence. Chicago, Illinois, USA: AAAI, 2008. 671-676
[7]  Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. The Annals of Statistics, 2004, 32(2): 407-499
[8]  Duda R O, Hart P E, Stork D G. Pattern Classification. New York: Wiley, 2001.
[9]  Peng H C, Long F H, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238
[10]  Zhao Z, Wang L, Liu H. Efficient spectral feature selection with minimum redundancy. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence. Atlanta, Georgia, USA: AAAI, 2010. 673-678
[11]  Chung F R K. Spectral Graph Theory. American Mathematical Society, 1997.
[12]  von Luxburg U. A tutorial on spectral clustering. Statistics and Computing, 2007, 17(4): 395-416
[13]  Saul L K, Roweis S T. An Introduction to Locally Linear Embedding, Technical Report [Online], available: http:// www.cs.toronto.edu/~roweis/lle/publications.html, March 1, 2014
[14]  Guyon I, Elisseeff A. An introduction to variable and feature selection. The Journal of Machine Learning Research, 2003, 3: 1157-1182
[15]  Bishop C M. Pattern Recognition and Machine Learning. New York: Springer, 2006.
[16]  Bengio Y. Learning Deep Architectures for AI. Hanover, MA, USA: Now Publishers Inc., 2009.
[17]  de la Torre F, Black M J. A framework for robust subspace learning. International Journal of Computer Vision, 2003, 54(1-3): 117-142
[18]  Zhao Z, Morstatter F, Sharma S, Alelyani S, Anand A, Liu H. Advancing Feature Selection Research, Technical Report, Arizona State University, [Online], available: http://www. public.asu.edu/~zzhao15/2010, March 1, 2014
[19]  He X F, Cai D, Niyogi P. Laplacian score for feature selection. In: Proceedings of the 2006 Advances in Neural Information Processing Systems. Cambridge, MA: MIP, 2006. 507-514
[20]  Zhao Z, Liu H. Spectral feature selection for supervised and unsupervised learning. In: Proceedings of the 24th International Conference on Machine Learning. New York, NY, USA: ACM, 2007. 1151-1157
[21]  Kohavi R, John G H. Wrappers for feature subset selection. Artificial Intelligence, 1997, 97(1-2): 273-324
[22]  Quinlan J R. C4. 5: Programs for Machine Learning. San Francisco, CA, USA: Morgan Kaufmann, 1993.
[23]  Koller D, Friedman N. Probabilistic Graphical Models: Principles and Techniques. Cambridge: MIT Press, 2009.
[24]  Nie F P, Huang H, Cai X, Ding C. Efficient and robust feature selection via joint l2, 1-norms minimization. In: Proceedings of the 2010 Advances in Neural Information Processing Systems. Vancouver, British Columbia, Canada, 2010. 1813-1821
[25]  Jiang Y, Ren J T. Eigenvalue sensitive feature selection. In: Proceedings of the 28th International Conference on Machine Learning. New York, NY, USA: ACM, 2011. 89-96
[26]  Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Proceedings of the 2001 Advances in Neural Information Processing Systems, Vancouver. British Columbia, Canada: MIT, 2001. 585-591
[27]  Cai D. Spectral Regression: A Regression Framework for Efficient Regularized Subspace Learning [Ph.D. dissertation], Department of Computer Science, University of Illinois at Urbana-Champaign, USA, 2009.
[28]  Cai D, Bao H J, He X F. Sparse concept coding for visual analysis. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI: IEEE, 2011. 2905-2910
[29]  Qiao H, Zhang P, Zhang B, Zheng S W. Tracking feature extraction based on manifold learning framework. Journal of Experimental and Theoretical Artificial Intelligence, 2011, 23(1): 23-38

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133