全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

数据驱动的复杂磨矿过程运行优化控制方法

DOI: 10.3724/SP.J.1004.2014.02005, PP. 2005-2014

Keywords: 磨矿过程,磨矿粒度,数据驱动,运行优化控制,神经网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对赤铁矿磨矿过程的磨矿粒度(Grindingparticlesize,GPS)与控制回路输出之间的动态特性难以用数学模型描述,且磨矿粒度不能在线测量,并受矿石成分与性质频繁波动干扰,难以采用已有运行优化方法的难题,结合磨矿过程的特点,利用数据,采用神经网络,提出由回路预设定值优化、性能指标估计、优化设定值评价以及磨矿粒度软测量组成的数据驱动的磨矿过程运行优化控制方法.该方法由磨矿粒度软测量估计矿浆粒度,通过回路预设定值优化模块求得使性能指标估计值接近最优值的回路预设定值,经优化设定值评估产生回路设定值,最后通过控制回路跟踪设定值,将矿浆粒度控制在目标值范围内并尽可能的接近目标值.通过研制的运行优化与控制研究平台,采用实际运行数据进行仿真实验,表明所提方法的有效性.

References

[1]  Wei D H, Craig I K. Grinding mill circuits——a surver of control and economic concerns. International Journal of Mineral Processing, 2009, 90(1-4): 56-66
[2]  Lestage R, Pomerleau A, Hodouin D, Constrained real-time optimization of a grinding circuit using steady-state linear programming supervisory control. Powder Technology, 2002, 124(3): 254-263
[3]  Niemi A J, Tian L, Ylinen R. Model predictive control for grinding systems. Control Engineering Practice, 1997, 5(2): 271-278
[4]  Ramasamya M, Narayananb S S, Raoc Ch D P. Control of ball mill grinding circuit using model predictive control scheme. Journal of Process Control, 2005, 15(3): 273-283
[5]  Zhou P, Chai T Y. Grinding circuit control: a hierarchical approach using extended 2-DOF decoupling and model approximation. Powder Technology, 2011, 213(3): 14-26
[6]  Chen X S, Yang J, Li S H. Disturbance observer based multi-variable control of ball mill grinding circuits. Journal of Process Control, 2009, 19(7): 1205-1213
[7]  Zhou P, Dai W, Chai T Y. Multivariable disturbance observer based advanced feedback control design and its application to a grinding circuit. IEEE Transactions on Control Systems Technology, 2014, 22(4): 1474-1485
[8]  Zhao Da-Yong, Chai Tian-You. Fuzzy switching control for sump level interval and hydrocyclone pressure in regrinding process. Acta Automatica Sinica, 2013, 39(5): 556-564 (赵大勇, 柴天佑. 再磨过程泵池液位区间与给矿压力模糊切换控制. 自动化学报, 2013, 39(5): 556-564)
[9]  Dubé Y, Lanther R. Computer aided dynamic analysis and control design for grinding circuits. CIM Bulletin, 1987, 80(905): 65-70
[10]  Chen X S, Li Q, Fei S M. Supervisory expert control for ball mill grinding circuits. Expert Systems with Applications, 2008, 34(3): 1877-1885
[11]  Zhou P, Chai T Y, Sun J. Intelligence-based supervisory control for optimizing the operation of a DCS-controlled grinding system. IEEE Transactions on Control Systems Technology, 2013, 21(1): 162-175
[12]  Chai Tian-You, Ding Jin-Liang, Wang Hong, Su Chun-Yi. Hybrid intelligent optimal control method for operation of complex industrial processes. Acta Automatica Sinica, 2008, 34(5): 505-515 (柴天佑, 丁进良, 王宏, 苏春翌. 复杂工业过程运行的混合智能优化控制方法. 自动化学报, 2008, 34(5): 505-515)
[13]  Chai T Y. Optimal operational control for complex industrial processes. In: Proceedings of the 8th IFAC International Symposium on Advanced Control of Chemical Processes. Singapore: International Federation of Automatic Control, 2012. 722-731
[14]  Chai Tian-You. Operational optimization and feedback control for complex industrial processes. Acta Automatica Sinica, 2013, 39(11): 1744-1757 (柴天佑. 复杂工业过程运行优化与反馈控制. 自动化学报, 2013, 39(11): 1744-1757)
[15]  Si J, Wang Y T. Online learning control by association and reinforcement. IEEE Transactions on Neural Network, 2001, 12(2): 264-276
[16]  Lu C, Si J, Xie X R. Direct heuristic dynamic programming for damping oscillations in a large power system. IEEE Transactions on System, Man, and Cybernetics Part B: Cybernetics, 2008, 38(4): 1008-1013
[17]  Liu De-Rong, Li Hong-Liang, Wang Ding. Data-based self-learning optimal control: research progress and prospects. Acta Automatica Sinica, 2013, 39(11): 1858-1870 (刘德荣, 李宏亮, 王鼎. 基于数据的自学习优化控制: 研究进展与展望. 自动化学报, 2013, 39(11): 1858-1870)
[18]  Zhang Hua-Guang, Zhang Xin, Luo Yan-Hong, Yang Jun. An overview of research on adaptive dynamic programming. Acta Automatica Sinica, 2013, 39(4): 303-311 (张化光, 张欣, 罗艳红, 杨珺. 自适应动态规划综述. 自动化学报, 2013, 39(4): 303-311)
[19]  Haykin S. Neural Networks: A Comprehensive Foundatio (2nd Edition). New Jersey: Prentice Hall, 1994.
[20]  Liu D R, Wei Q L. Finite-approximation-error based optimal control approach for discrete-time nonlinear systems. IEEE Transactions on Cybernetics, 2013, 43(2): 779-789
[21]  Tie Ming, Fan Yu-Shun, Chai Tian-You. Distributed simulation platform for optimizing control of mineral grinding process. Journal of System Simulation, 2008, 20(15): 4000-4005 (铁鸣, 范玉顺, 柴天佑. 磨矿流程优化控制的分布式仿真平台. 系统仿真学报, 2008, 20(15): 4000-4005)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133