全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于量化新息的容积粒子滤波融合目标跟踪算法

DOI: 10.3724/SP.J.1004.2014.01867, PP. 1867-1874

Keywords: 无线传感器网络,目标跟踪,比特位量化,噪声相关,容积粒子滤波

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对现有非线性网络化目标跟踪融合算法存在的精度低和实用性差等不足,以一类带有噪声相关的非线性网络化目标跟踪系统为对象,研究基于测量新息量化策略和容积粒子滤波(Cubatureparticlefilter,CPF)的目标跟踪融合算法.首先,利用状态方程恒等变换和矩阵相似变换理论解除过程噪声与测量噪声以及测量噪声之间的相关性;其次,各个传感器节点采用自适应策略量化局部测量新息并将其发送到融合中心(Fusioncenter,FC);随后,在集中式融合框架下采用容积粒子滤波器设计基于测量值扩维的量化融合跟踪算法,进而给出相应的顺序滤波量化融合算法,上述算法可有效解决因自适应量化引起的非高斯问题;最后,通过两个计算机仿真实验验证了所提出跟踪算法的有效性.

References

[1]  Yang Xiao-Jun. Channel aware target localization in multi-hop wireless sensor networks. Acta Automatica Sinica, 2013, 39(7): 1110-1116(杨小军. 多跳无线传感器网络下信道感知的目标定位方法. 自动化学报, 2013, 39(7): 1110-1116)
[2]  Masazade E, Niu R, Varshney P K. Dynamic bit allocation for object tracking in wireless sensor networks. IEEE Transactions on Signal Processing, 2012, 60(10): 5048-5063
[3]  Xu J, Li J X, Xu S. Data fusion for target tracking in wireless sensor networks using quantized innovations and Kalman filtering. Science China Information Sciences, 2012, 55(3): 530-544
[4]  Xu Xiao-Liang, Zhang Hao, Tang Xian-Feng. Micro-EKF fusion algorithm for multi-sensor systems with correlated noise. Journal of Tsinghua University (Science and Technology), 2012, 52(9): 1199-1204(徐小良, 张浩, 汤显峰. 噪声相关多传感器系统的微观EKF融合算法. 清华大学学报(自然科学版), 2012, 52(9): 1199-1204)
[5]  Wen C L, Ge Q B, Tang X F. Kalman filtering in a bandwidth constrained sensor network. Chinese Journal of Electronics, 2009, 18(4): 713-718
[6]  Peng L, Huang X, He L. Research on the target tracking algorithm for wireless sensor network based on improved particle filter. Journal of Convergence Information Technology, 2012, 7(11): 11-19
[7]  Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269
[8]  Tang X F, Guan B L, Ge Q B, Xu X L. Nonlinear fusion using quantized measurements and cubature particle filter. In: Proceedings of the 25th Chinese Control and Decision Conference. NJ: IEEE Computer Society, 2013: 3692-3697
[9]  Han Chong-Zhao, Zhu Hong-Yan, Duan Zhan-Sheng. Multi-Source Information Fusion. Beijing: Tsinghua University Press, 2006(韩崇昭, 朱洪艳, 段战胜. 多源信息融合. 北京: 清华大学出版社, 2006.)
[10]  Hadjidj A, Souil M, Bouabdallah A, Challal Y, Owen H. Wireless sensor networks for rehabilitation applications: challenges and opportunities. Journal of Network and Computer Applications, 2013, 36(1): 1-15
[11]  Yang Xiao-Jun, Xing Ke-Yi. Channel fault tolerant target tracking in multi-hop wireless sensor networks based on particle filtering. Acta Automatica Sinica, 2011, 37(4): 440-448 (杨小军, 邢科义. 无线多跳传感器网络下基于粒子滤波的信道容错的目标跟踪方法. 自动化学报, 2011, 37(4): 440-448)
[12]  Tu Zhi-Liang, Wang Qiang, Shen Yi. A distributed simultaneous optimization algorithm for tracking and monitoring of moving target in mobile sensor networks. Acta Automatica Sinica, 2012, 38(3): 452-461(涂志亮, 王强, 沈毅. 移动传感器网络中目标跟踪与监测的同步优化. 自动化学报, 2012, 38(3): 452-461)
[13]  Zhou Y, Li J, Wang D. Target tracking in wireless sensor networks using adaptive measurement quantization. Science China Information Sciences, 2012, 55(4): 827-838
[14]  Luo Z Q. Universal decentralized estimation in a bandwidth constrained sensor network. IEEE Transactions on Information Theory, 2005, 51(6): 2210-2219
[15]  You K, Xie L, Sun S, Xiao W. Quantized filtering of linear stochastic systems. Transactions of the Institute of Measurement and Control, 2011, 33(6): 683-698
[16]  Xu T L, Ge Q B, Feng X L, Wen C L. Strong tracking filter with bandwidth constraint for sensor networks. In: Proceedings of the 8th IEEE International Conference on Control & Automation. Xiamen, China: IEEE Computer Society, 2010. 596-601
[17]  Xu X L, Ge Q B. Networked strong tracking filters with noise correlations and bits quantization. In: Proceedings of the 3rd International Conference on Artificial Intelligence and Computational Intelligence. Heidelberg, Germany: Springer Verlag, 2011. 183-192
[18]  Savic V, Zazo S. Cooperative localization in mobile networks using nonparametric variants of belief propagation. Ad Hoc Networks, 2013, 11(1): 138-150
[19]  Sukhavasi R T, Hassibi B. The Kalman-like particle filter: optimal estimation with quantized innovations/measurements. IEEE Transactions on Signal Processing, 2013, 61(1): 131-136
[20]  Sun F, Tang L J. Improved particle filter algorithm for INS/GPS integrated navigation system. In: Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation. Beijing, China: IEEE Computer Society, 2011. 2392-2396
[21]  Jin Xue-Bo, Sun You-Xian. Optimal state estimation for data fusion with correlated measurement noise. Journal of Zhejiang University (Engineering Science), 2003, 37(1): 60-64(金学波, 孙优贤. 相关测量噪声的多传感器最优融合状态估计. 浙江大学学报(工学版), 2003, 37(1): 60-64)
[22]  Anderson B, Moore J. Optimal Filtering. Englewood Cliffs, NJ: Prentice-Hall, 1979.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133