全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于运动相关皮层电位握力运动模式识别研究

DOI: 10.3724/SP.J.1004.2014.01045, PP. 1045-1057

Keywords: 运动相关电位,握力运动模式,支持向量机,脑-机接口,脑-机交互控制,脑控机器人接口

Full-Text   Cite this paper   Add to My Lib

Abstract:

?面向基于脑-机接口(Brain-computerinterface,BCI)的脑-机交互控制(Brain-machineinteractioncontrol,BMIC)——直接脑控机器人,提出一种新的左、右手握力运动参数范式,在该范式下探索左、右手握力运动相关皮层电位/运动相关电位(Movement-relatedpotentials,MRPs)的时域特征表示并识别握力运动模式.在涉及左、右手4个不同任务的实验中采集了11个健康被试的脑电信号,任务期间要求被试以2种握力变化模式之一完成自愿握力运动,每种任务随机重复30次.不同握力任务之间具有显著差异的运动相关电位特征用于识别握力运动模式.分别用基于核的Fisher线性判别分析和支持向量机识别4个不同的握力运动任务.研究结果进一步证实运动相关电位可以表征握力运动规划、运动执行和运动监控的脑神经机制过程.基于核的Fisher线性判别分析和支持向量机分别获得24±4%和21±5%的平均错误分类率.最小误分类率是12%,所有被试平均最小误分类率为20.9±5%.与传统的仅仅识别参与运动的肢体类型以及识别单侧肢体运动参数的研究相比,本研究可望为脑-机交互控制/脑控机器人接口提供更多的力控制意图指令,奠定了后续的对比研究基础.

References

[1]  Fu Yun-Fa, Wang Yue-Chao, Li Hong-Yi, Xu Bao-Lei, Li Yong-Cheng. Direct brain-controlled robot interface technology. Acta Automatica Sinica, 2012, 38(8): 1229-1246(伏云发, 王越超, 李洪谊, 徐保磊, 李永程. 直接脑控机器人接口技术. 自动化学报, 2012, 38(8): 1229-1246)
[2]  Decety J. The neurophysiological basis of motor imagery. Behavioural Brain Research, 1996, 77(1-2): 45-52
[3]  Pfurtscheller G, Neuper C. Motor imagery and direct brain-computer communication. Proceedings of the IEEE, 2001, 89(7): 1123-1134
[4]  Cunnington R, Iansek R, Bradshaw J L, Phillips J G. Movement-related potentials associated with movement preparation and motor imagery. Experimental Brain Research, 1996, 111(3): 429-436
[5]  Pfurtscheller G, Lopes da Silva F H. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 1999, 110(11): 1842-1857
[6]  Neuper C, W?rtz M, Pfurtscheller G. ERD/ERS patterns reflecting sensorimotor activation and deactivation. Progress in Brain Research, 2006, 159: 211-222
[7]  Shibasaki H, Hallett M. What is the bereitschaftspotential? Clinical Neurophysiology, 2006, 117(11): 2341-2356
[8]  do Nascimento O F, Nielsen K D, Voigt M. Movement related parameters modulate cortical activity during imaginary isometric plantar-flexions. Experimental Brain Research, 2006, 171(1): 78-90
[9]  Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M. EEG-based discrimination between imagination of right and left hand movement. Electroencephalography and Clinical Neurophysiology, 1997, 103(6): 642-651
[10]  Neuper C, Schl?gl A, Pfurtscheller G. Enhancement of left-right sensorimotor EEG differences during feedback-regulated motor imagery. Journal of Clinical Neurophysiology, 1999, 16(4): 373-382
[11]  Schl?sgl A, Lee F, Bischof H, Pfurtscheller G. Characterization of four class motor imagery EEG data for the BCI-competition 2005. Journal of Neural Engineering, 2005, 2(4): L14-L22
[12]  Gu Y, Dremstrup K, Farina D. Single-trial discrimination of type and speed of wrist movements from EEG recordings. Clinical Neurophysiology, 2009, 120(8): 1596-1600
[13]  Gu Y, Farina D, Murguialday A R, Dremstrup K, Montoya P, Birbaumer N. Offline identification of imagined speed of wrist movements in paralyzed ALS patients from single-trial EEG. Frontiers in Neuroscience, 2009, 3: 62
[14]  Gu Y, do Nascimento O F, Lucase M F, Farina D. Identification of task parameters from movement-related cortical potentials. Medical Biological Engineering Computer, 2009, 47(12): 1257-1264
[15]  do Nascimento O F, Farina D. Movement-related cortical potentials allow discrimination of rate of torque development in imaginary isometric plantar flexion. IEEE Transactions on Biomedical Engineering, 2008, 55(11): 2675-2678
[16]  Scott S H. Converting thoughts into action. Nature, 2006, 442(7099): 141-142
[17]  Wolpaw J R, Birbaumer N, Heetderks W J, McFarland D J, Peckham P H, Schalk G, Donchin E, Quatrano L A, Robinson C J, Vaughan T M. Brain-computer interface technology: a review of the first international meeting. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 164-173
[18]  Wang Xing-Yu, Jin Jing, Zhang Yu, Wang Bei. Brain control: human-computer integration control based on brain-computer interface. Acta Automatica Sinica, 2013, 39(3): 208-221(王行愚, 金晶, 张宇, 王蓓. 脑控: 基于脑-机接口的人机融合控制. 自动化学报, 2013, 39(3): 208-221)
[19]  Gao S K. Grand challenges in EEG based brain-computer interface [Online], available: http://lifesciences.eee.org/lsgcc/2012-ieee-life-sciences-grand-challenges-conference/presentations/session-1/, August 10, 2013
[20]  Farina D, do Nascimento O F, Lucas M F, Doncarli C. Optimization of wavelets for classification of movement-related cortical potentials generated by variation of force-related parameters. Journal of Neuroscience Methods, 20078, 162(1-2): 357-363
[21]  Fu Y F, Xu B L, Li Y C, Wang Y C, Li H Y, Yu Z T. The single-trial decoding of imagined grip force parameters involved left and right hands based on movement-related cortical potentials. Chinese Science Bulletin, 2014, 59(16): 1907-1916
[22]  Yuan H, Perdoni C, He B. Relationship between speed and EEG activity during imagined and executed hand movements. Journal of Neural Engineering, 2010, 7(2): 26001
[23]  Romero D H, Lacourse M G, Lawrencea M G, Schandlera S, Cohen M J. Event-related potentials as a function of movement parameter variations during motor imagery and isometric action. Behavioural Brain Research, 2000, 117(1-2): 83-96
[24]  Klem G H, Lüders H O, Jasper H H, Elger C E. The ten-twenty electrode system of the International Federation of Clinical Neurophysiology. Electroencephalography Clinical Neurophysiology, 1999, 52(S2): 3-6
[25]  Yang Shu-Ying. Pattern Recognition and Intelligent Computing: Matlab Technology Realization (2nd Edition). Beijing: Publishing House of Electronics Industry, 2011 (杨淑莹. 模式识别与智能计算——Matlab技术实现. 第2版. 北京: 电子工业出版社, 2011)
[26]  Slobounov S M, Ray W J. Movement-related potentials with reference to isometric force output in discrete and repetitive tasks. Experimental Brain Research, 1998, 123(4): 461-473
[27]  Shibasaki H, Barrett G, Halliday E, Halliday A M. Cortical potentials associated with voluntary foot movement in man. Electroencephalography and Clinical Neurophysiology, 1981, 52(6): 507-516
[28]  do Nascimento O F, Nielsen K D, Voigt M. Relationship between plantar-flexor torque generation and the magnitude of the movement-related potentials. Experimental Brain Research, 2005, 160(2): 154-165

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133