全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

热含量不变量的SAR图像点特征变化检测

DOI: 10.3724/SP.J.1004.2014.01126, PP. 1126-1134

Keywords: SAR图像,热含量不变量,变化检测,EM算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对区域变化检测受分类器精度影响大、无法探测出内部细微变化这一问题,本文提出了基于热含量不变量的合成孔径雷达(Syntheticapertureradar,SAR)图像点特征变化检测.该方法利用热核特征,具有计算简便、矩阵扰动性小的特点,且有效地降低了噪声的干扰.由热核不变量的统计特性,采用期望极大化(Expectationmaximization,EM)算法解决了SAR图像的自动变化检测.同时通过对权的讨论,给出了适用于SAR图像的权函数定义.对单波段单极化SAR与多极化SAR图像,本文算法相比于基于像素和似然比的方法,能够更快速更精确地检测到变化区域.

References

[1]  Rignot E J M, Van Zyl J J. Change detection techniques for ERS-I SAR data. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(4): 896-906
[2]  Bruzzone L, Prieto D F. Automatic analysis of the difference image for unsupervised change detection. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3): 1171-1182
[3]  Chen Fu-Long, Zhang Hong, Wang Chao. The art in SAR change detection——a systematic review. Remote Sensing Technology and Application, 2007, 22(1): 109-115(陈富龙, 张红, 王超. SAR变化检测技术发展综述. 遥感技术与应用, 2007, 22(1): 109-115)
[4]  Conradsen K, Nielsen A A, Schou J, Skriver H. A test statistic in the complex wishart distribution and its application to change detection in polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1): 4-19
[5]  Jin Ya-Qiu, Wang Da-Fang. Automatic detection of terrain surface change after Wenchuan earthquake, May 2008, from ALOS SAR images using 2EM-MRF method. Progress in Nature Science, 2009, 19(4): 412-420(金亚秋, 王大芳. ALOS SAR 图像2EM-MRF方法自动检测2008年5月中国汶川地震区域三类地表变化. 自然科学进展, 2009, 19(4): 412-420)
[6]  Lombardo P, Oliver C J. Maximum likelihood approach to the detection of changes between multitemporal SAR images. IEE Proceedings of Radar, Sonar and Navigation, 2001, 148(4): 200-210
[7]  Bovolo F, C-Valls G, Bruzzone L. A support vector domain method for change detection in multitemporal images. Pattern Recognition Letters, 2010, 31(10): 1148-1154
[8]  Bovolo F, Bruzzone L, Marconcini M. A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(7): 2070-2082
[9]  Hu H, Ban Y. Urban land-cover mapping and change detection with radarsat SAR data using neural network and rule based classifiers. In: Proceedings of the 21st ISPRS Congress. Beijing, China: ISPRS, 2008.
[10]  Deng Jin-Song, Li Jun, Wang Ke. Detecting land use change using PCA-enhancement and multi-source classifier from SPOT images. Spectroscopy and Spectral Analysis, 2009, 29(6): 1627-1631(邓劲松, 李君, 王珂. 基于多时相PCA光谱增强和多源光谱分类器的SPOT影像土地利用变化检测. 光谱学与光谱分析, 2009, 29(6): 1627-1631)
[11]  Ghosh S, Bruzzone L, Patra S, Bovolo F, Ghosh A. A context-sensitive technique for unsupervised change detection based on Hopfield-type neural networks. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(3): 778-789
[12]  Marchesi S, Bovolo F, Bruzzone L. A context-sensitive technique robust to registration noise for chance detection in very high resolution multispectral images. In: Proceedings of Geoscience and Remote Sensing Symposium. Boston, USA: IEEE, 2008. PartIII, 150-153
[13]  Gamba P, Acqua F D, Lisini G. Change detection of multitemporal SAR data in urban areas combining feature-based and pixel-based techniques. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2820-2827
[14]  Bai X, Hancock E R, Wilson R C. Graph characteristics from the heat kernel trace. Pattern Recognition, 2009, 42(11): 2589-2606
[15]  Zhang F, Hancock E R. Graph spectral image smoothing using the heat kernel. Pattern Recognition, 2008, 41(11): 3328-3342
[16]  Qiu H J, Hancock E R. Graph matching using commute time spanning trees. In: Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong, China: IEEE, 2006. 1224-1227
[17]  Bai X, Hancok E R, Wilson R C. Geometric characterization and clustering of graphs using heat kernel embeddings. Image and Vision Computing, 2010, 28(6): 1003-1021
[18]  Qiu H J, Hancock E R. Clustering and embedding using commute times. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(11): 1873-1890
[19]  Luo Wan, Lin Wei, Wen Jin-Huan. Change detection based on region heat kernel invariants for SAR image. Journal of Astronautics, 2011, 32(11): 2410-2416(罗湾, 林伟, 温金环. 基于区域热核不变量的SAR图像变化检测. 宇航学报, 2011, 32(11): 2410-2416)
[20]  Zelnik-Manor L, Perona P. Self-tuning spectral clustering. In: Proceedings of the Eigtheenth Annual Conference on Neural Information Processing Systems. Whistler, B.C.: NIPS, 2004
[21]  Liu Bo-Lian. Combinatorial Matrix Theory. Beijing: Science Publishing House, 1994. 8-16(柳柏濂. 组合矩阵论. 北京: 科学出版社, 1994. 8-16)
[22]  McDonald P, Meyers R. Diffusions on graphs, Poisson problems and spectral geometry. Transactions of the American Mathematical Society, 2002, 354(12): 5111-5136
[23]  Ersahin K, Cumming I G, Yedlin M J. Classification of polarimetric SAR data using spectral graph partitioning. In: Proceedings of the 2006 IEEE International Conference Geoscience and Remote Sensing Symposium. Denver, CO: IEEE, 2006. 1756-1759
[24]  Han Shou-Dong, Zhao Yong, Tao Wen-Bing, Sang Nong. Gaussian super-pixel based fast image segmentation using graph cuts. Acta Automatica Sinica, 2011, 37(1): 11-20(韩守东, 赵勇, 陶文兵, 桑农. 基于高斯超像素的快速Graph Cuts 图像分割方法. 自动化学报, 2011, 37(1): 11-20)
[25]  Yao Ting-Ting, Xie Zhao. Top-down inference with relabeling and mapping rules in hierarchical MRF for image segmentation. Acta Automatica Sinica, 2013, 39(10): 1581-1593(姚婷婷, 谢昭. 多层次MRF重标记及映射法则下的图像分割. 自动化学报, 2013, 39(10): 1581-1593)
[26]  Huo Chun-Lei, Cheng Jian, Lu Han-Qing, Zhou Zhi-Xin. Object-level change detection based on multiscale fusion. Acta Automatica Sinica, 2008, 34(3): 251-257(霍春雷, 程健, 卢汉清, 周志鑫. 基于多尺度融合的对象级变化检测新方法. 自动化学报, 2008, 34(3): 251-257)
[27]  Cai Chun, Sun Hong, Cao Yong-Feng. Change detection technique based on region likelihood ratio for SAR images. Journal of Wuhan University (Natural Sciences Edition), 2005, 51(1): 109-113(蔡纯, 孙洪, 曹永峰. 基于区域似然比的SAR图像变化检测. 武汉大学学报(理学版), 2005, 51(1): 109-113)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133