全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

数据驱动的层次场景序列识别模型研究

DOI: 10.3734/SP.J.1004.2014.00763, PP. 763-770

Keywords: 空间金字塔模型,视觉词汇字典,生成方法,判决方法,神经网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对层次场景图像序列,本文提出了一种数据驱动的基于快速序列视觉表述任务(rapidserialvisualpresentationtask,RSVP)的场景识别模型.首先基于金字塔模型提取三层尺度图像块,然后构建包括全局和局部特征的词汇字典,接着分别利用生成模型和判决模型训练视觉词汇,最后通过神经网络从图像块标记中获得场景类别.实验表明算法能够获得更为精确的分类结果.

References

[1]  Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the 2006 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 2169-2178
[2]  Rasiwasia N, Vasconcelos N. Holistic context modeling using semantic co-occurrences. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1889-1895
[3]  Malisiewicz T, Efros A A. Recognition by association via learning per-exemplar distances. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8
[4]  Torralba A. Contextual priming for object detection. International Journal of Computer Vision, 2003, 53(2): 169-191
[5]  Oliva A, Torralba A. Modeling the shape of the scene: a holistic representation of the spatial envelope. International Journal of Computer Vision, 2001, 42(3): 145-175
[6]  Zhang J G, Marszalek M, Lazebnik S, Schmid C. Local features and kernels for classification of texture and object categories: a comprehensive study. International Journal of Computer Vision, 2007, 73(2): 213-238
[7]  Berg A, Berg T, Malik J. Shape matching and object recognition using low distortion correspondences. In: Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 26-33
[8]  Zhu Hai-Long, Liu Peng, Liu Jia-Feng, Tang Xiang-Long. A graph analysis method for abnormal crowd state detection. Acta Automatica Sinica, 2012, 38(5): 742-750 (in Chinese)
[9]  Bosch A, Mu?oz X, Martí R. A review: which is the best way to organize/classify images by content? Image and Vision Computing, 2007, 25(6): 778-791
[10]  Bosch A, Zisserman A, Munoz X. Scene classification via pLSA. In: Proceedings of the 9th European Conference Computer Vision. Berlin, Heidelberg: Springer, 2006. 517530
[11]  Bosch A, Zisserman A, Munoz X. Scene classification using a hybrid generative/discriminative approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(4): 712-727
[12]  Agarwal A, Triggs B. Multilevel image coding with hyperfeatures. International Journal of Computer Vision, 2008, 78(1): 15-27
[13]  Siagian C, Itti L. Rapid biologically-inspired scene classification using features shared with visual attention. IEEE Transactions on Pattern Analysis and Machine Learning, 2007, 29(2): 300-312
[14]  Li F F, Perona P. A bayesian hierarchical model for learning natural scene categories. In: Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 524-531
[15]  Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation. Journal of Machine Learning Research, 2003, 3: 993-1022
[16]  Li F, Fergus R, Perona P. Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In: Proceedings of the 2004 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC, USA: IEEE, 2004. 59-70
[17]  Fergus R, Perona P, Zisserman A. Object class recognition by unsupervised scale-invariant learning. In: Proceedings of the 2003 IEEE Conference on Computer Vision and Pattern Recognition. Madison, USA: IEEE, 2003. 264-271
[18]  Bosch A, Zisserman A, Muoz X. Image classification using ROIs and multiple kernel learning. International Journal of Computer Vision, 2008, 78(4): 326-338
[19]  Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110
[20]  Wang X G, Ma X X, Grimson W E L. Unsupervised activity perception in crowded and complicated scenes using hierarchical bayesian models. IEEE Transactions on Pattern Analysis and Machine Learning, 2009, 31(2): 539-555
[21]  Liang X, Huang X, Wang M. Uncalibrated path planning in the image space for the fixed camera configuration. Acta Automatica Sinica, 2013, 39(6): 759-769
[22]  Grauman K, Darrell T. The pyramid match kernels: discriminative classification with sets of image features. In: Proceedings of the 2005 IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005. 1458-1465
[23]  Hofmann T. Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual International ACM SIGIR Conference Research and Development in Information Retrieval. New York, USA: ACM, 1999. 50-57
[24]  Haykin S. Neural Networks. New Jersey: Prentice-Hall, 1994. 328-333
[25]  Feng Wen-Gang, Gao Jun, Buckles B, Wu Ke-Wei. Research on vehicle shadow segmentation with object knowledge constraint based on multi-colors paces. Journal of Image and Graphics, 2011, 16(9): 1599-1606 (in Chinese)
[26]  Feng Wen-Gang, Gao Jun, Buckles B, Wu Ke-Wei. Wireless capsule endoscopy video classification using an unsupervised learning approach. Journal of Image and Graphics, 2011, 16(11): 2041-2046 (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133