全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

输入饱和系统的离散增益调度控制及其在在轨交会中的应用

DOI: 10.3724/SP.J.1004.2014.00208, PP. 208-218

Keywords: 输入饱和非线性,离散增益调度,参量Lyapunov方程,不变集,在轨交会

Full-Text   Cite this paper   Add to My Lib

Abstract:

?基于参量Lyapunov方法和不变集理论,针对具有输入饱和非线性约束的线性系统,提出了一种离散增益调度控制方法.通过逐渐增大代表闭环系统收敛速率参数的值,所提出的离散增益调度控制方法逐步加快闭环系统的收敛速度,达到改善闭环系统动态性能的目的.如果开环系统是非指数不稳定的,则所提出的离散增益调度控制器可实现半全局镇定;反之可实现局部镇定,并均可保证闭环系统的指数稳定性.最后,将所提出的方法应用于空间合作目标在轨交会控制系统的控制器设计,并直接在原始非线性系统模型上进行仿真,结果验证了所提方法的有效性.

References

[1]  Chen B M, Lee T H, Peng K, Venkataramanan V. Composite nonlinear feedback control for linear systems with input saturation: theory and an application. IEEE Transactions on Automatic Control, 2003, 48(3): 427-439
[2]  Du H P, Lam J. Energy-to-peak performance controller design for building via static output feedback under consideration of actuator saturation. Computers & Structures, 2006, 84(31-32): 2277-2290
[3]  da Silva J M G Jr, Tarbouriech S. Local stabilization of discrete-time linear systems with saturating controls: an LMI-based approach. IEEE Transactions on Automatic Control, 2001, 46(1): 119-124
[4]  Hu T S, Lin Z L. Control Systems with Actuator Saturation: Analysis and Design. Boston, MA: Springer, 2001
[5]  Huang S D, Lam J. Saturated linear quadratic regulation of uncertain linear systems: stability region estimation and controller design. International Journal of Control, 2002, 75(2): 97-110
[6]  Sussmann H J, Sontag E D, Yang Y. A general result on the stabilization of linear systems using bounded controls. IEEE Transactions on Automatic Control, 1994, 39(12): 2411-2425
[7]  Wu F, Lu B. Anti-windup control design for exponentially unstable LTI systems with actuator saturation. Systems & Control Letters, 2004, 52(3-4): 305-322
[8]  Lin Z L, Saberi A, Stoorvogel A A. Semiglobal stabilization of linear discrete-Time systems subject to input saturation, via linear feedback——-an ARE-based approach. IEEE Transactions on Automatic Control, 1996, 41(8): 1203-1207
[9]  Burgat C, Tarbouriech S. Nonlinear Systems. London: Chapman & Hall, 1996
[10]  Blanchini F. Set invariance in control. Automatica, 1999, 35(11): 1747-1767
[11]  Fu Jian, Wu Qing-Xian, Jiang Chang-Sheng, Wang Yu-Fei. Robust sliding mode positively invariant set for nonlinear continuous system. Acta Automatica Sinica, 2011, 37(11): 1395-1401(傅健, 吴庆宪, 姜长生, 王宇飞. 连续非线性系统的滑模鲁棒正不变集控制. 自动化学报, 2011, 37(11): 1395-1401)
[12]  Suárez Z, álvarez-Ramírez J, Solís-Daun J. Linear systems with bounded inputs: global stabilization with eigenvalue placement. International Journal of Robust and Nonlinear Control, 1997, 7(9): 835-845
[13]  Lin Z L. Global control of linear systems with saturating actuators. Automatica, 1998, 34(7): 897-905
[14]  Megretski A. BIBO output feedback stabilization with saturated control. In: Proceedings of the 13th IFAC World Congress. San Francisco, CA: IFAC, 1996. 435-440
[15]  Hu T S, Lin Z L. On improving the performance with bounded continuous feedback laws. IEEE Transactions on Automatic Control, 2002, 47(9): 1570-1575
[16]  Grognard F, Sepulchre R, Bastin G. Improving the performance of low-gain designs for bounded control of linear systems. Automatica, 2002, 38(10): 1777-1782
[17]  Teel A R. Linear systems with input nonlinearities: global stabilization by scheduling a family of H∞ type controllers. International Journal of Robust and Nonlinear Control, 1995, 5(5): 399-411
[18]  Zhou B, Lin Z L, Duan G R. Robust global stabilization of linear systems with input saturation via gain scheduling. International Journal of Robust and Nonlinear Control, 2010, 20(4): 424-447
[19]  De Dona J A, Reza Moheimani S O, Goodwin G C, Feuer A. Robust hybrid control incorporating over-saturation. Systems & Control Letters, 1999, 38(3): 179-185
[20]  Hu T S, Lin Z L, Shamash Y. Semi-global stabilization with guaranteed regional performance of linear systems subject to actuator saturation. Systems & Control Letters, 2001, 43(3): 203-210
[21]  Wredenhagen G F, Bélanger P R. Piecewise-linear LQ control for systems with input constraints. Automatica, 1994, 30(3): 403-416
[22]  Zhou Bin. Parametric Lyapunov Approach to the Design of Control Systems with Saturation Nonlinearity and Its Applications[Ph.D. dissertation], Harbin Institute of Technology, China, 2010 (周彬. 具有饱和非线性的控制系统设计的参量Lyapunov方法及其应用[博士学位论文], 哈尔滨工业大学, 中国, 2010)
[23]  Lin Lai-Xing. Space Rendezvous and Docking Technology. Beijing: National Defence Industry Press, 1995(林来兴. 空间交会对接技术. 北京: 国防工业出版社, 1995)
[24]  Wu Hong-Xin, Hu Hai-Xia, Xie Yong-Chun, Wang Ying. Several questions on autonomous rendezvous docking. Journal of Astronautics, 2003, 24(2): 132-137, 143 (吴宏鑫, 胡海霞, 谢永春, 王颖. 自主交会对接若干问题. 宇航学报, 2003, 24(2): 132-137, 143)
[25]  Lin Z L. Low Gain Feedback. London: Springer-Verlag, 1998. 354
[26]  Zhou B, Duan G R, Lin Z L. A parametric Lyapunov equation approach to the design of low gain feedback. IEEE Transactions on Automatic Control, 2008, 53(6): 1548-1554
[27]  Hu T S, Lin Z L. On enlarging the basin of attraction for linear systems under saturated linear feedback. Systems & Control Letters, 2000, 40(1): 59-69
[28]  Zhou B, Duan G R. On analytical approximation of the maximal invariant ellipsoids for linear systems with bounded controls. IEEE Transactions on Automatic Control, 2009, 54(2): 346-353
[29]  Carter T E. State transition matrices for terminal rendezvous studies: brief survey and new example. AIAA Journal of Guidance, Control, and Dynamics, 1998, 21(1): 148-155
[30]  Clohessy W H, Wiltshire R S. Terminal guidance system for satellite rendezvous. Journal of the Aeronautical Sciences, 1960, 27(9): 653-658

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133