全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

量化非线性控制——综述

DOI: 10.3724/SP.J.1004.2013.01820, PP. 1820-1830

Keywords: 量化控制,非线性系统,输入状态稳定性,小增益定理

Full-Text   Cite this paper   Add to My Lib

Abstract:

?量化控制系统设计通过将控制与通讯相结合来解决大量运用信息技术的现代工程系统的相关控制问题.本文首先回顾近年来线性及非线性系统量化控制的结果.其中,非线性系统量化控制的发展尚处于初级阶段.高维、量化、非线性及不确定性的共存导致量化非线性控制问题极具挑战性,需要全新的思想和技术来解决.本文重点回顾基于输入状态稳定性(ISS)及其回路小增益定理(Cyclic-small-gaintheorem)的量化非线性控制设计方法,同时列出该领域一些尚未解决的问题.

References

[1]  Curry R E. Separation theorem for nonlinear measurements. IEEE Transactions on Automatic Control, 1969, 14(5): 561-564
[2]  Baillieul J. Feedback designs for controlling device arrays with communication channel bandwidth constraints. In: Proceedings of the 2009 ARO Workshop on Smart Structures. Boston, MA: Pennsylvania State University, 1999. 1-7 (请核对页码信息)
[3]  Nair G N, Evans R J. Stabilization with data-rate-limited feedback: tightest attainable bounds. Systems and Control Letters, 2000, 41(1): 49-56
[4]  Nair G N, Evans R J. Exponential stabilisability of finite-dimensional linear systems with limited data rates. Automatica, 2003, 39(4): 585-593
[5]  Elia N, Mitter S K. Stabilization of linear systems with limited information. IEEE Transactions on Automatic Control, 2001, 46(9): 1384-1400
[6]  Ishii H A, Francis B. Quadratic stabilization of sampled-data systems with quantization. Automatica, 2003, 39(10): 1793-1800
[7]  Coutinho D F, Fu M Y, De Souza C E. Input and output quantized feedback linear systems. IEEE Transactions on Automatic Control, 2010, 55(3): 761-766
[8]  Li K Y, Baillieul J. Robust quantization for digital finite communication bandwidth (DFCB) control. IEEE Transactions on Automatic Control, 2004, 49(9): 1573-1584
[9]  Delchamps D F. Stabilizing a linear system with quantized state feedback. IEEE Transactions on Automatic Control, 1990, 35(8): 916-924
[10]  Brockett R W, Liberzon D. Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic Control, 2000, 45(7): 1279-1289
[11]  Ling Q, Lemmon M D. Stability of quantized control systems under dynamic bit assignment. IEEE Transactions on Automatic Control, 2005, 50(5): 734-740
[12]  Nair G N, Huang M, Evans R J. Optimal infinite horizon control under a low data rate. In: Proceedings of the 14th IFAC Symposium on System Identification. Newcastle, Australia: IFAC, 2006. 1115-1120
[13]  Fu M Y, Xie L H. Finite-level quantized feedback control for linear systems. IEEE Transactions on Automatic Control, 2009, 54(5): 1165-1170
[14]  Sontag E D. Smooth stabilization implies coprime factorization. IEEE Transactions on Automatic Control, 1989, 34(4): 435-443
[15]  Sontag E D. Comments on integral variants of ISS. Systems and Control Letters, 1998, 34(1-2): 93-100
[16]  Martins N C, Dahleh M A. Fundamental limitations of performance in the presence of finite capacity feedback. In: Proceedings of the 2005 American Control Conference. Portland, OR, USA: IEEE, 2005. 79-86
[17]  Matveev A S, Savkin A V. The problem of LQG optimal control via a limited capacity communication channel. Systems and Control Letters, 2004, 53(1): 51-64
[18]  Fu M Y. Lack of separation principle for quantized linear quadratic gaussian control. IEEE Transactions on Automatic Control, 2012, 57(9): 2385-2390
[19]  De Persis C, Isidori A. Stabilizability by state feedback implies stabilizability by encoded state feedback. Systems and Control Letters, 2004, 53(3-4): 249-258
[20]  Liberzon D, Hespanha J P. Stabilization of nonlinear systems with limited information feedback. IEEE Transactions on Automatic Control, 2005, 50(6): 910-915
[21]  Nair G N, Evans R J, Mareels I M Y, Moran W. Topological feedback entropy and nonlinear stabilization. IEEE Transactions on Automatic Control, 2004, 49(9): 1585-1597
[22]  Liberzon D. Hybrid feedback stabilization of systems with quantized signals. Automatica, 2003, 39(9): 1543-1554
[23]  Shim H, Kim J S, Liberzon D. Quasi-ISS reduced-order observers and quantized output feedback. In: Proceedings of the 48th IEEE Conference on Decision and Control. Shanghai, China: IEEE, 2009. 6680-6685
[24]  Freeman R A. Global internal stabilizability does not imply global external stabilizability for small sensor disturbances. IEEE Transactions on Automatic Control, 1995, 40(12): 2119-2122
[25]  Jiang Z P, Mareels I M Y. A small-gain control method for nonlinear cascaded systems with dynamic uncertainties. IEEE Transactions on Automatic Control, 1997, 42(3): 292-308
[26]  Sontag E D. Further facts about input to state stabilization. IEEE Transactions on Automatic Control, 1990, 35(4): 473-476
[27]  Freeman R A, Kokotovic P V. Global robustness of nonlinear systems to state measurement disturbances. In: Proceedings of the 32nd IEEE Conference on Decision and Control. San Antonio, TX: IEEE, 1993. 1507-1512
[28]  Jiang Z P, Teel A R, Praly L. Small-gain theorem for ISS systems and applications. Mathematics of Control, Signals and Systems, 1994, 7(2): 95-120
[29]  Jiang Z P. A combined backstepping and small-gain approach to adaptive output feedback control. Automatica, 1999, 35(6): 1131-1139
[30]  Jiang Z P, Arcak M. Robust global stabilization with ignored input dynamics: an input-to-state stability (ISS) small-gain approach. IEEE Transactions on Automatic Control, 2001, 46(9): 1411-1415
[31]  Jiang Z P, Wang Y. A generalization of the nonlinear small-gain theorem for large-scale complex systems. In: Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing, China: IEEE, 2008. 1188-1193
[32]  Liu T F, Jiang Z P, Hill D J. Quantized output-feedback control of nonlinear systems: a cyclic-small-gain approach. In: Proceedings of the 30th Chinese Control Conference. Yantai, China: IEEE, 2011. 487-492
[33]  Liu T F, Jiang Z P, Hill D J. Quantized stabilization of strict-feedback nonlinear systems based on ISS cyclic-small-gain theorem. Mathematics of Control, Signals, and Systems, 2012, 24(1-2): 75-110
[34]  Filippov A F. Differential Equations with Discontinuous Righthand Sides. Boston: Kluwer Academic Publishers, 1988
[35]  De Persis C. Robust stabilization of nonlinear systems by quantized and ternary control. Systems and Control Letters, 2009, 58(8): 602-608
[36]  Khalil H K. Nonlinear Systems (3rd edition). New Jersey: Prentice-Hall, 2002
[37]  Praly L, Wang Y. Stabilization in spite of matched unmodeled dynamics and an equivalent definition of input-to-state stability. Mathematics of Control, Signals and Systems, 1996, 9(1): 1-33
[38]  Karafyllis I, Jiang Z P. Stability and Stabilization of Nonlinear Systems. London: Springer, 2011
[39]  Liberzon D. Switching in Systems and Control. Boston: Birkh?user, 2003
[40]  Isidori A. Nonlinear Control Systems (3rd edition). London: Springer, 1995
[41]  Coron J M. Control and Nonlinearity. Providence: American Mathematical Society, 2009
[42]  Byrnes C I, Delli P F, Isidori A. Output Regulation of Uncertain Nonlinear Systems. Boston: Birkh?user, 1997
[43]  Jiang Z P. Decentralized disturbance attenuating output-feedback trackers for large-scale nonlinear systems. Automatica, 2002, 38(8): 1407-1415
[44]  Karafyllis I, Jiang Z P. A vector small-gain theorem for general non-linear control systems. IMA Journal of Mathematical Control and Information, 2011, 28(3): 309-344
[45]  Hayakawa T, Ishii H, Tsumura K. Adaptive quantized control for linear uncertain discrete-time systems. Automatica, 2009, 45(3): 692-700
[46]  Teel A R. Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem. IEEE Transactions on Automatic Control, 1998, 43(7): 960-964
[47]  Larson R. Optimum quantization in dynamic systems. IEEE Transactions on Automatic Control, 1967, 12(2): 162-168
[48]  Lunze J. Qualitative modelling of linear dynamical systems with quantized state measurements. Automatica, 1994, 30(3): 417-431
[49]  Wong W S, Brockett R W. Systems with finite communication bandwidth constraints. II: Stabilization with limited information feedback. IEEE Transactions on Automatic Control, 1999, 44(5): 1049-1053
[50]  Hespanha J, Ortega A, Vasudevan L. Towards the control of linear systems with minimum bit-rate. In: Proceedings of the 15th International Symposium on Mathematical Theory of Networks and Systems. South Bend, Indiana: University of Notre Dame, 2002. 1-15 (请核对页码信息)
[51]  Tatikonda S, Mitter S K. Control under communication constraints. IEEE Transactions on Automatic Control, 2004, 49(7): 1056-1068
[52]  Fu M Y, Xie L H. The sector bound approach to quantized feedback control. IEEE Transactions on Automatic Control, 2005, 50(11): 1698-1711
[53]  Ishii H, Ba?sar T, Tempo R. Randomized algorithms for quadratic stability of quantized sampled-data systems. Automatica, 2004, 40(5): 839-846
[54]  Phat V N, Jiang J M, Savkin A V, Petersen I R. Robust stabilization of linear uncertain discrete-time systems via a limited capacity communication channel. Systems and Control Letters, 2004, 53(5): 347-360
[55]  Nair G N, Fagnani F, Zampieri S, Evans R J. Feedback control under data rate constraints: an overview. Proceedings of the IEEE, 2007, 95(1): 108-137
[56]  Petersen I R, Savkin A V. Multi-rate stabilization of multivariable discrete-time linear systems via a limited capacity communication channel. In: Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, FL: IEEE, 2001. 304-309
[57]  Liberzon D. On stabilization of linear systems with limited information. IEEE Transactions on Automatic Control, 2003, 48(2): 304-307
[58]  Savkin A V. Analysis and synthesis of networked control systems: topological entropy, observability, robustness and optimal control. Automatica, 2006, 42(1): 51-62
[59]  Liberzon D, Nesic D. Input-to-state stabilization of linear systems with quantized state measurements. IEEE Transactions on Automatic Control, 2007, 52(5): 767-781
[60]  Sharon Y, Liberzon D. Input to state stabilizing controller for systems with coarse quantization. IEEE Transactions on Automatic Control, 2012, 57(4): 830-844
[61]  Sontag E D. Input to state stability: basic concepts and results. Nonlinear and Optimal Control Theory. Berlin: Springer-Verlag, 2007. 163-220
[62]  Sontag E D, Wang Y. New characterizations of input-to-state stability. IEEE Transactions on Automatic Control, 1996, 41(9): 1283-1294
[63]  Nair G N, Evans R J. Stabilizability of stochastic linear systems with finite feedback data rates. SIAM Journal on Control and Optimization, 2004, 43(2): 413-436
[64]  Tatikonda S, Sahai A, Mitter S K. Stochastic linear control over a communication channel. IEEE Transactions on Automatic Control, 2004, 49(9): 1549-1561
[65]  Bicchi A, Marigo A, Piccoli B. On the reachability of quantized control systems. IEEE Transactions on Automatic Control, 2002, 47(4): 546-563
[66]  De Persis C. n-bit stabilization of n-dimensional nonlinear systems in feedforward form. IEEE Transactions on Automatic Control, 2005, 50(3): 299-311
[67]  Liu J L, Elia N. Quantized feedback stabilization of non-linear affine systems. International Journal of Control, 2004, 77(3): 239-249
[68]  Ceragioli F, De Persis C. Discontinuous stabilization of nonlinear systems: quantized and switching controls. Systems and Control Letters, 2007, 56(7-8): 461-473
[69]  Liberzon D. Observer-based quantized output feedback control of nonlinear systems. In: Proceedings of the 17th IFAC World Congress. Seoul, Korea: IFAC, 2008. 8039-8043
[70]  Sontag E D. Clocks and insensitivity to small measurement errors. ESAIM: Control, Optimisation and Calculus of Variations, 1999, 4(1): 537-557
[71]  Jiang Z P, Mareels I M Y, Hill D J. Robust control of uncertain nonlinear systems via measurement feedback. IEEE Transactions on Automatic Control, 1999, 44(4): 807-812
[72]  Freeman R A, Kokotovic P V. Robust Nonlinear Control Design: State-Space and Lyapunov Techniques. Boston: Birkh?user, 1996
[73]  Ledyaev Y S, Sontag E D. A Lyapunov characterization of robust stabilization. Nonlinear Analysis: Theory, Methods and Applications, 1999, 37(7): 813-840
[74]  Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive Control Design. New York: John Wiley and Sons, 1995
[75]  Jiang Z P, Mareels I M Y, Wang Y. A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems. Automatica, 1996, 32(8): 1211-1215
[76]  Jiang Z P. Global output feedback control with disturbance attenuation for minimum-phase nonlinear systems. Systems and Control Letters, 2000, 39(3): 155-164
[77]  Karafyllis I, Jiang Z P. Necessary and sufficient Lyapunov-like conditions for robust nonlinear stabilization. ESAIM: Control, Optimisation and Calculus of Variations, 2009, 16(4): 887-928
[78]  Liu T F, Hill D J, Jiang Z P. Lyapunov formulation of ISS cyclic-small-gain in continuous-time dynamical networks. Automatica, 2011, 47(9): 2088-2093
[79]  Liu T F, Jiang Z P, Hill D J. A sector bound approach to feedback control of nonlinear systems with state quantization. Automatica, 2012, 48(1): 145-152
[80]  Liu T F, Jiang Z P, Hill D J. Small-gain based output-feedback controller design for a class of nonlinear systems with actuator dynamic quantization. IEEE Transactions on Automatic Control, 2012, 57(5): 1326-1332
[81]  Heemels W P M H, Weiland S. Input-to-state stability and interconnections of discontinuous dynamical systems. Automatica, 2008, 44(12): 3079-3086
[82]  Hahn W. Stability of Motion. Berlin: Springer-Verlag, 1967
[83]  Sontag E D, Wang Y. On characterizations of the input-to-state stability property. Systems and Control Letters, 1995, 24(5): 351-359
[84]  Jiang Z P, Repperger D W, Hill D J. Decentralized nonlinear output-feedback stabilization with disturbance attenuation. IEEE Transactions on Automatic Control, 2001, 46(10): 1623-1629
[85]  Karafyllis I, Jiang Z P. A small-gain theorem for a wide class of feedback systems with control applications. SIAM Journal on Control and Optimization, 2007, 46(4): 1483-1517
[86]  Hespanha J P, Liberzon D, Angeli D, Sontag E D. Nonlinear norm-observability notions and stability of switched systems. IEEE Transactions on Automatic Control, 2005, 50(2): 154-168
[87]  Sontag E D. Mathematical Control Theory: Deterministic Finite Dimensional Systems (2nd edition). New York: Springer, 1998
[88]  Huang J. Nonlinear Output Regulation: Theory and Applications. Philadelphia: SIAM, 2004
[89]  Siljak D D. Decentralized Control of Complex Systems. Boston: Academic Press, 1991
[90]  Liu T F, Jiang Z P, Hill D J. Decentralized output-feedback control of large-scale nonlinear systems with sensor noise. Automatica, 2012, 48(10): 2560-2568
[91]  Liu T F, Jiang Z P, Hill D J. Lyapunov formulation of the ISS cyclic-small-gain theorem for hybrid dynamical networks. Nonlinear Analysis: Hybrid Systems, 2012, 6(4): 988-1001
[92]  Hayakawa T, Ishii H, Tsumura K. Adaptive quantized control for nonlinear uncertain systems. Systems and Control Letters, 2009, 58(9): 625-632

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133