According to the U.S. National Institutes of Health, approximately 500,000 Americans have Parkinson's disease (PD), with roughly another 50,000 receiving new diagnoses each year. 70%–90% of these people also have the hypokinetic dysarthria associated with PD. Deep brain stimulation (DBS) substantially relieves motor symptoms in advanced-stage patients for whom medication produces disabling dyskinesias. This study investigated speech changes as a result of DBS settings chosen to maximize motor performance. The speech of 10 PD patients and 12 normal controls was analyzed for syllable rate and variability, syllable length patterning, vowel fraction, voice-onset time variability, and spirantization. These were normalized by the controls' standard deviation to represent distance from normal and combined into a composite measure. Results show that DBS settings relieving motor symptoms can improve speech, making it up to three standard deviations closer to normal. However, the clinically motivated settings evaluated here show greater capacity to impair, rather than improve, speech. A feedback device developed from these findings could be useful to clinicians adjusting DBS parameters, as a means for ensuring they do not unwittingly choose DBS settings which impair patients' communication. 1. Introduction 1.1. Background Parkinson’s disease (PD) is an idiopathic neurodegenerative disease caused by loss of dopamine-producing cells in the substantia nigra of the basal ganglia, affecting over one-half million people in the U.S., most over age 50. Its major symptoms are muscular rigidity, bradykinesia, resting tremor, and postural instability. An estimated 70%–90% of patients with PD also develop speech or voice disorders [1] specifically hypokinetic dysarthria [2, page 174]. Hypokinetic dysarthria is characterized by monopitch, monoloudness, underarticulation, and harsh and/or breathy voice. It worsens with disease severity and duration [3] so that patients who are more incapacitated and more reliant on caregivers are also more difficult to understand. The major treatment for Parkinson’s disease is L-dopa, a dopamine precursor given orally to patients. L-dopa is most effective on the general motor symptoms of PD, with variable effects on speech. For example, some studies [4] have found that though motor performance, vocal tremor, and glottal vibration were improved in patients with PD after taking L-dopa, there were no significant improvements in prosody, articulation, or vocal intensity after medical therapy. Other researchers [5] have assessed the amount of pause
References
[1]
A. Farrell, D. Theodoros, E. Ward, B. Hall, and P. Silburn, “Effects of neurosurgical management of Parkinson's disease on speech characteristics and oromotor function,” Journal of Speech, Language, and Hearing Research, vol. 48, no. 1, pp. 5–20, 2005.
[2]
F. Darley, A. Aronson, and J. Brown, Motor Speech Disorders, WB Saunders, Philadelphia, Pa, USA, 1975.
[3]
S. Sapir, A. A. Pawlas, L. O. Ramig et al., “Voice and speech abnormalities in Parkinson disease: relation to severity of motor impairment, duration of disease, medication, depression, gender, and age,” Journal of Medical Speech-Language Pathology, vol. 9, no. 4, pp. 213–226, 2001.
[4]
L. D'Alatri, G. Paludetti, M. F. Contarino, S. Galla, M. R. Marchese, and A. R. Bentivoglio, “Effects of bilateral subthalamic nucleus stimulation and medication on Parkinsonian speech impairment,” Journal of Voice, vol. 22, no. 3, pp. 365–372, 2008.
[5]
A. M. Goberman, C. A. Coelho, and M. P. Robb, “Prosodic characteristics of Parkinsonian speech: the effect of levodopa-based medication,” Journal of Medical Speech-Language Pathology, vol. 13, no. 1, pp. 51–68, 2005.
[6]
M. De Letter, P. Santens, M. De Bodt, G. Van Maele, J. Van Borsel, and P. Boon, “The effect of levodopa on respiration and word intelligibility in people with advanced Parkinson's disease,” Clinical Neurology and Neurosurgery, vol. 109, no. 6, pp. 495–500, 2007.
[7]
M. De Letter, P. Santens, I. Estercam et al., “Levodopa-induced modifications of prosody and comprehensibility in advanced Parkinson's disease as perceived by professional listeners,” Clinical Linguistics and Phonetics, vol. 21, no. 10, pp. 783–791, 2007.
[8]
A. K. Ho, J. L. Bradshaw, and R. Iansek, “For better or worse: the effect of Levodopa on speech in Parkinson's disease,” Movement Disorders, vol. 23, no. 4, pp. 574–580, 2008.
[9]
M. R. Delong, “Deep brain stimulation for Parkinson's disease,” Annals of Neurology, vol. 49, no. 2, pp. 142–143, 2001.
[10]
M. I. Hariz, S. Rehncrona, N. P. Quinn, J. D. Speelman, and C. Wensing, “Multicenter study on deep brain stimulation in Parkinson's disease: an independent assessment of reported adverse events at 4 years,” Movement Disorders, vol. 23, no. 3, pp. 416–421, 2008.
[11]
J. Volkmann, J. Herzog, F. Kopper, and G. Geuschl, “Introduction to the programming of deep brain stimulators,” Movement Disorders, vol. 17, no. 3, pp. S181–S187, 2002.
[12]
J. Duffy, Motor Speech Disorders: Substrates, Differential Diagnosis, and Management, Mayo Found, St. Louis, Mo, USA, 1995.
[13]
B. P. Bejjani, D. Gervais, I. Arnulf et al., “Axial parkinsonian symptoms can be improved: the role of levodopa and bilateral subthalamic stimulation,” Journal of Neurology Neurosurgery and Psychiatry, vol. 68, no. 5, pp. 595–600, 2000.
[14]
M. Gentil, P. Chauvin, S. Pinto, P. Pollak, and A. L. Benabid, “Effect of bilateral stimulation of the subthalamic nucleus on parkinsonian voice,” Brain and Language, vol. 78, no. 2, pp. 233–240, 2001.
[15]
M. Gentil, S. Pinto, P. Pollak, and A. L. Benabid, “Effect of bilateral stimulation of the subthalamic nucleus on parkinsonian dysarthria,” Brain and Language, vol. 85, no. 2, pp. 190–196, 2003.
[16]
F. Klostermann, F. Ehlen, J. Vesper et al., “Effects of subthalamic deep brain stimulation on dysarthrophonia in Parkinson's disease,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 5, pp. 522–529, 2008.
[17]
P. Krack, M. Poepping, D. Weinert, B. Schrader, and G. Deuschl, “Thalamic, pallidal, or subthalamic surgery for Parkinson's disease?” Journal of Neurology, Supplement, vol. 247, no. 2, pp. 122–134, 2000.
[18]
K. ?stergaard and N. A. Sunde, “Evolution of Parkinson's disease during 4 years of bilateral deep brain stimulation of the subthalamic nucleus,” Movement Disorders, vol. 21, no. 5, pp. 624–631, 2006.
[19]
M. Rousseaux, P. Krystkowiak, O. Kozlowski, C. ?zsancak, S. Blond, and A. Destée, “Effects of subthalamic nucleus stimulation on parkinsonian dysarthria and speech intelligibility,” Journal of Neurology, vol. 251, no. 3, pp. 327–334, 2004.
[20]
E. Tripoliti, P. Dowsey-Limousin, S. Tisch, E. Borrell, and M. Hariz, “Speech in Parkinson’s disease following subthalamic nucleus deep brain stimulation: preliminary results,” Journal of Medical Speech Language Pathology, vol. 14, no. 4, pp. 309–316, 2006.
[21]
S. Pinto, M. Gentil, P. Krack et al., “Changes induced by Levodopa and subthalamic nucleus stimulation on Parkinsonian speech,” Movement Disorders, vol. 20, no. 11, pp. 1507–1515, 2005.
[22]
E. Wang, L. Verhagen Metman, R. Bakay, J. Arzbaecher, and B. Bernard, “The effect of unilateral electrostimulation of the subthalamic nucleus on respiratory/phonatory subsystems of speech production in Parkinson's disease—a preliminary report,” Clinical Linguistics and Phonetics, vol. 17, no. 4-5, pp. 283–289, 2003.
[23]
E. Wang, L. Mehtman, R. Bakay, J. Arzbaecher, B. Bernard, and D. Corcos, “Hemisphere-specific effects of subthalamic nucleus deep brain stimulation on speaking rate and articulatory accuracy of syllable repetitions in Parkinson’s disease,” Journal of Medical Speech-Language Pathology, vol. 14, no. 4, pp. 323–333, 2006.
[24]
A. L. T?rnqvist, L. Schalén, and S. Rehncrona, “Effects of different electrical parameter settings on the intelligibility of speech in patients with Parkinson's disease treated with subthalamic deep brain stimulation,” Movement Disorders, vol. 20, no. 4, pp. 416–423, 2005.
[25]
E. B. Montgomery, “Deep brain stimulation and speech: a new model of speech function and dysfunction in Parkinson's disease,” Journal of Medical Speech-Language Pathology, vol. 15, no. 3, pp. 9–25, 2007.
[26]
E. Tripoliti, L. Zrinzo, I. Martinez-Torres et al., “Effects of subthalamic stimulation on speech of consecutive patients with Parkinson disease,” Neurology, vol. 76, no. 1, pp. 80–86, 2011.
[27]
J. A. Logemann and H. B. Fisher, “Vocal tract control in Parkinson's disease: phonetic feature analysis of misarticulations,” Journal of Speech and Hearing Disorders, vol. 46, no. 4, pp. 348–352, 1981.
[28]
G. Weismer, “Articulatory characteristics of Parkinsonian dysarthria: segmental and phrase-level timing, spirantization, and glottal-supraglottal coordination,” in The Dysarthrias, M. McNeil, J. Rosenbek, and A. Aronson, Eds., College Hill Press, San Diego, Calif, USA, 1984.
C. Van Horne, K. Chenausky, J. MacAuslan, C. Massari, and M. McCormick, “Automatic methods to monitor the speech of Parkinson’s patients with deep brain stimulators,” Journal of the Acoustic Society of America, vol. 127, p. 1995, 2010.
[32]
J. Olive, A. Greenwood, and J. Coleman, Acoustics of American English: A Dynamic Approach, Springer, New York, NY, USA, 1993.
[33]
H. J. Fell, J. Macauslan, L. J. Ferrier, and K. Chenausky, “Automatic babble recognition for early detection of speech related disorders,” Behaviour and Information Technology, vol. 18, no. 1, pp. 56–63, 1999.
[34]
P. Blanchet and G. Snyder, “Speech rate deficits in individuals with Parkinson’s Disease: a review of the literature,” Journal of Medical Speech-Language Pathology, vol. 17, no. 1, pp. 1–7, 2009.
[35]
H. Hirose, “Pathophysiology of motor speech disorders (dysarthria),” Folia Phoniatrica et Logopaedica, vol. 38, no. 2-4, pp. 61–88, 1986.
[36]
P. So, E. Ott, S. J. Schiff, D. T. Kaplan, T. Sauer, and C. Grebogi, “Detecting unstable periodic orbits in chaotic experimental data,” Physical Review Letters, vol. 76, no. 25, pp. 4705–4708, 1996.
[37]
H. Ackermann and W. Ziegler, “Articulatory deficits in Parkinsonian dysarthria: an acoustic analysis,” Journal of Neurology Neurosurgery and Psychiatry, vol. 54, no. 12, pp. 1093–1098, 1991.
[38]
S. Skodda, A. Flasskamp, and U. Schlegel, “Instability of syllable repetition in Parkinson's disease-Influence of levodopa and deep brain stimulation,” Movement Disorders, vol. 26, no. 4, pp. 728–730, 2011.
[39]
C. Moreau, O. Pennel-Ployart, S. Pinto et al., “Modulation of dysarthropneumophonia by low-frequency STN DBS in advanced Parkinson's disease,” Movement Disorders, vol. 26, no. 4, pp. 659–663, 2011.