全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于径向基函数神经网络和模糊积分融合的电网分区故障诊断

DOI: 10.13334/j.0258-8013.pcsee.2014.04.007, PP. 562-569

Keywords: 大电网,电网分区,故障诊断,径向基函数神经网络,模糊积分

Full-Text   Cite this paper   Add to My Lib

Abstract:

为有效解决分区故障诊断关于互连区域间联络线的诊断问题,提出了基于径向基函数神经网络和模糊积分融合的大电网故障诊断方法。该方法通过网络重叠分区将大电网划分为若干区域,故障发生后根据警报信息选择性触发警报信息所在区域对应的区域径向基函数神经网络诊断模块,然后利用模糊积分关联融合相连区域关于联络线的诊断输出,实现对联络线的故障诊断。该方法不仅可以诊断各区域内部发生的故障,而且能够有效地诊断区域间联络线发生的故障。算例仿真结果表明:该方法简单、有效,能弥补现有电网分区故障诊断方法在联络线故障诊断方面存在的不足,且能够处理各种复杂故障情况,具有良好的故障容错能力。

References

[1]  孙静,秦世引,宋永华.模糊PETRI网在电力系统故障诊断中的应用[J].中国电机工程学报,2004,24(9):74-79.Sun Jing,Qin Shiyin,Song Yonghua.Fuzzy Petri net and its application in the fault diagnosis on electric power systems[J].Proceedings of the CSEE,2004,24(9):74-79(in Chinese).
[2]  Vazquez M E,Chacon M O L,Altuve F H J.An on-line expert system for fault section diagnosis in power systems[J].IEEE Transactions on Power Systems,1997,12(1):357-362.
[3]  杨健维,何正友,臧天磊.基于方向性加权模糊Petri网的电网故障诊断方法[J].中国电机工程学报,2010,30(34):42-49.Yang Jianwei,He Zhengyou,Zang Tianlei.Power system fault-diagnosis method based on directional weighted fuzzy Petri nets[J].Proceeding of the CSEE,2010,30(34):42-49(in Chinese).
[4]  Luo X,Kezunovic M.Implementing fuzzy reasoning Petri-nets for fault section estimation[J].IEEE Transactions on Power Delivery,2008,23(2):676-685.
[5]  吴欣,郭创新,曹一家.基于贝叶斯网络及信息时序属性的电力系统故障诊断方法[J].中国电机工程学报,2005,25(13):14-18.Wu Xin,Guo Chuangxin,Cao Yijia.A new fault diagnosis approach of power system based on bayesian network and temporal order information[J].Proceedings of the CSEE,2005,25(13):14-18(in Chinese).
[6]  Zhu Yongli,Huo Limin,Lu Jinling.Bayesian networks-based approach for power systems fault diagnosis[J].IEEE Transactions on Power Delivery,2006,21(2):634-639.
[7]  Lin W M,Lin C H,Sun Z C.Event-orthogonal error-insensitive multiple fault detection with cascade correlation network[J].IEEE Transactions on Power Delivery,2003,18(4):1152-1157.
[8]  Lin Xiangning,Ke Shuohao,Li Zhengtian,et al.A fault diagnosis method of power systems based on improved objective function and genetic algorithm-tabu search[J].IEEE Transactions on Power Delivery,2010,25(3):1268-1274.
[9]  Guo Wenxin,Wen Fushuan,Ledwich G,et al.An analytic model for fault diagnosis in power systems considering malfunctions of protective relays and circuit breaks[J].IEEE Transactions on Power Delivery,2010,25(3):1393-1401.
[10]  李再华,白晓民,周子冠,等.基于特征挖掘的电网故障诊断方法[J].中国电机工程学报,2010,30(10):16-22.Li Zaihua,Bai Xiaomin,Zhou Ziguan,et al.Method of power system fault diagnosis based on feature mining [J].Proceedings of the CSEE,2010,30(10):16-22(in Chinese).
[11]  毕天姝,倪以信,吴复立,等.基于新型神经网络的电网故障诊断方法[J].中国电机工程学报,2002,22(2):73-78.Bi Tianshu,Ni Yixin,Wu Fuli,et al.A novel neural network approach for fault section estimation [J].Proceedings of the CSEE,2002,22(2):73-78(in Chinese).
[12]  Lin W M,Lin C H,Sun Z C.Adaptive multiple fault detection and alarm processing for loop system with probabilistic network[J].IEEE Transactions on Power Delivery,2004,19(1):64-69.
[13]  毕天姝,倪以信,吴复立,等.基于径向基函数神经网络和模糊控制系统的电网故障诊断新方法[J].中国电机工程学报,2005,25(14):12-18.Bi Tianshu,Ni Yixin,Wu Fuli,et al.Hybrid fault section estimation system with radial basis function neural network and fuzzy system[J].Proceedings of the CSEE,2005,25(14):12-18(in Chinese).
[14]  Souza J C S,Rodrigues M,Schilling M T, et al.Fault location in electrical power systems using intelligent systems techniques[J].IEEE Transactions on Power Delivery,2001,16(1):59-67.
[15]  Bi Tianshu,Ni Yixin,Shen C M,et al.Efficient multiway graph partitioning method for fault section estimation in large- scale power networks[J].IEE Proceedings- Generation,Transmission and Distribution,2002,149(3):289-294.
[16]  Park J,Sandberg I W.Universal approximation using Radial-Basis-Function networks[J].Neural Computation,1991,3(2):246-257.
[17]  Liu Xiaofeng,Ma Lin,Mathew J.Machinery fault diagnosis based on fuzzy measure and fuzzy integral data fusion techniques[J].Mechanical Systems and Signal Processing,2009,23(3):690-700.
[18]  Kwak K C,Pedrycz W.Face recognition: A study in information fusion using fuzzy integral[J].Pattern Recognition Letters,2005,26(6):719-733.
[19]  Sugeno M.Theory of fuzzy integrals and its applications [D].Tokyo:Tokyo Institute of Technology,1974.
[20]  Sugeno M.Fuzzy measures and fuzzy integrals:a survey[J].Fuzzy Automata and Decision Processes,1977,78(33):89-102.
[21]  Kwak K C,Pedrycz W.Face recognition using fuzzy integral and wavelet decomposition method[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2004,34(4):1666-1675.
[22]  Murofushi T,Sugeno M.An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure[J].Fuzzy sets and Systems,1989,29(2):201-227.
[23]  梅念,石东源,谢俊,等.基于编码理论的电网故障诊断及检测信号校正[J].电力系统自动化,2007,31(12):68-72.Mei Nian,Shi Dongyuan,Xie Jun,et al.Power network fault diagnosis and monitoring signal correction based on the coding theory[J].Automation of Electric Power Systems,2007,31(12):68-72(in Chinese).
[24]  Ham F M,Kostanic I.神经计算原理[M].叶世伟,王海娟,译.北京:机械工业出版社,2007:101-106.Ham F M,Kostanic I.Principles of Neurocomputing for Science and Engineering[M].Ye Shiwei,Wang Haijuan,translated.Beijing:China Machine Press,2007:101-106 (in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133