全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

采用贝叶斯-克里金-卡尔曼模型的多风电场风速短期预测

, PP. 107-114

Keywords: 风电场,短期风速预测,克里金?卡尔曼滤波,变分贝叶斯,时空模型,概率图模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

精确的短期风速预测对可靠安全的电力系统运行很重要。传统的预测方法没有考虑空间相邻风电场的信息。然而,多个风电场的风速在时间和空间上是相关的。该文给出了一个采用贝叶斯-克里金-卡尔曼模型的短期风速预测方法。由主克里金函数构成的空域结构使用贝叶斯层次结构进行建模,同时应用状态空间模型对时域动态性进行建模。采用计算速度更有效的变分贝叶斯方法来逼近推断和学习模型参数。在公开的多风电场数据集上评估提前1h的风速预测性能,与持续预测算法进行比较的结果显示了该文提出的方法在均方根误差评价指标上的改善。

References

[1]  Xie L,Carvalho P M S,Ferreira L A F M,et al. Wind integration in power system:operational challenges and possible solutions[J]. Proceedings of the IEEE, 2011,99(1):214-232.
[2]  Lew D,Milligan M,Jordan G. The value of wind power forecasting[C]//The91th American Meteorological Society Annual Meeting,the Second Conference on Weather,Climate,and the New Energy Economy,Washington DC,USA,2011.
[3]  Zhu X,Genton M. Short-term wind speed forecasting for power system operations[J]. International Statistical Review, 2012,80(1):2-23.
[4]  Jiang X,Dong B,Xie L. Adaptive Gaussian process for short-term wind speed forecasting[C]//Proceedings of 19th European Conference on Artificial Intelligence, Lisbon,Portugal,2010.
[5]  杨秀媛,肖洋,陈树勇. 风电场风速和发电功率预测研究[J]. 中国电机工程学报, 2005,25(11):1-5. Yang Xiuyuan,XiaoYang,ChenShu-yong.Wind speed and generated power forecasting in wind farm [J].Proceedings of the CSEE,2005,25(11)
[6]  吴兴华,周晖,黄梅. 基于模式识别的风电场风速和发电功率预测[J]. 继电器, 2008,36(1):27-32. Wu Xinghua,ZhouHui,Huang Mei.Wind speed and generated power forecasting based on pattern recognition in wind farm[J].Relay,2008,36(1)
[7]  叶林,刘鹏. 基于经验模态分解和支持向量机的短期风电功率组合预测模型[J]. 中国电机工程学报, 2011,31(31):102-108. Ye Lin,Liu Peng.Combined model based on EMD-SVM for short-term wind power prediction[J].Proceedings of the China Society for Electrical Engineering,2011,31(31)
[8]  杨锡运,孙宝君,张新房,等. 基于相似数据的支持向量机短期风速预测仿真研究[J]. 中国电机工程学报, 2012,32(4):35-41. Yang Xiyun,Sun Baojun,Zhang Xinfang,et al.Short- term wind speed forecasting based on support vector machine with similar data[J].Proceedings of the CSEE,2012,32(4)
[9]  孙春顺,王耀南,李欣然. 小时风速的向量自回归模型及应用[J]. 中国电机工程学报, 2008,28(14):112-117. Sun Chunshun,Wang Yaonan,Li Xinran.A vector autoregression model of hourly wind speed and its application in hourly wind speed forecasting [J].Proceedings of the CSEE,2008,28(14)
[10]  潘迪夫,刘辉,李燕飞. 风电场风速短期多步预测改进算法[J]. 中国电机工程学报, 2008,28(26):87-91. Pan Difu,Liu Hui,Li Yanfei. Optimization algorithm of short-term multi-step wind speed-forecast[J].Proceedings of the CSEE,2008,28(26)
[11]  周松林,峁美琴,苏建徽. 风电功率短期预测及非参数区间估计[J]. 中国电机工程学报, 2011,31(25):10-16. Zhou Songlin,Mao Meiqin,Su Jianhui.Short-term forecasting of wind power and non-parametric confidence interval estimation[J].Proceedings of the CSEE,2011, 31(25)
[12]  Foley A M,Leahy P G,Marvuglia A,et al. Current methods and advances in forecasting of wind power generation[J]. Renewable Energy, 2012(37):1-8.
[13]  Tastu J,Pinson P,Kotwa E,et al. Spatio-temporal analysis and modeling of short-term wind power forecast errors [J]. Wind Energy, 2011,14(1):43-60.
[14]  Hering A S,Genton M G. Powering up with space-time wind forecasting[J]. Journal of the American Statistical Association, 2010,105(489):92-103.
[15]  Mardia K V,Goodall C,Redfern E J,et al. The KrigedKalman filter(with discussion)[J]. Test, 7:217-252.
[16]  Sahu S J,Mardia K V. A Bayesian KrigedKalman model for short-term forecasting of air pollution levels [J]. Applied Statistics, 2005(54):223-244.
[17]  Barber C,Bockhorst J. Auto-regressive HMM inference with incomplete data for short-horizon wind forecasting [C]//Proceedings of the 24th Annual Conference on Neural Information Processing Systems,2010.
[18]  Bishop C M. Pattern recognition and machine learning [M]. New York:Springer, 2006:462-466.
[19]  Digalakis V,Rohlicek J R,Ostendorf M. ML estimation of a stochastic linear system with the EM algorithm and its application to speech recognition[J]. IEEE Transactions on Speech and Audio Processing, 1993,1(4):431-442.
[20]  Giebel G,Brownsword G R,Kariniotakis G,et al. The state-of-the-art in short-term prediction of wind power a literature overview[R/OL]//. Project report for the Anemos.plus and SafeWind projects, 2011.http://www.prediktor.dk/publ/GGiebelEtAl-StateOfTheArtInShortTermPrediction_ANEMOSplus_2011.pdf.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133