全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

焙烧温度对铈改性钛纳米管脱硝活性及理化特性的影响

, PP. 33-38

Keywords: catalyst,selectivecatalyticreduction(SCR),基金项目:国家自然科学基金项目(NSFC-51278458),浙江省公益计划项目(2012C23024),教育部长江学者奖励计划(2009)。

Full-Text   Cite this paper   Add to My Lib

Abstract:

铈改性钛纳米管是一种兼具良好脱硝活性、N2选择性和碱/碱土金属抗性的新型选择性催化还原脱硝催化剂,该文系统考察了焙烧温度对该催化剂脱硝活性和晶型结构、微观形貌及表面元素形态等理化特性的影响。实验结果表明,350℃和450℃焙烧所得样品的催化脱硝活性很高,在280~400℃之间均可维持80%以上的脱硝效率,而550℃焙烧所得样品的活性极低。通过X射线衍射、扫描电镜、透射电子显微镜、X射线光电子能谱和比表面积(Brunauer-Emmett-Tellermethod,BET)法等表征发现,550℃焙烧所得样品的低活性与其管状结构被破坏和Ce3+急剧减少等有关。因此,铈改性钛纳米管脱硝催化剂的焙烧温度不宜过高,且考虑到实际应用时温度常超过350℃,该催化剂的较佳焙烧温度为450℃。

References

[1]  刘子红,邱建荣,谭增强,等.改性活性碳纤维制备及脱除NO的实验研究[J].中国电机工程学报,2012,32(8):64-70.Liu Zihong,Qiu Jianrong,Tan Zengqiang,et a1.Experimental study of no removal by modified activated carbon fiber[J].Proceedings of the CSEE,2012,32(8):64-70(in Chinese).
[2]  朱崇兵,金保升,李锋,等.蜂窝状V2O5-WO3/TiO2催化剂脱硝性能研究[J].中国电机工程学报,2007,27(29):45-50.Zhu Chongbing,Jin Baosheng,Li Feng,et a1.Study on DeNOx performance of honeycomb V2O5-WO3/TiO2 catalysts[J].Proceedings of the CSEE,2007,27(29):45-50(in Chinese).
[3]  Long R,Yang R.Superior Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia [J].Journal of the American Chemical Society,1999,121(23):5595-5596.
[4]  Klimczak M,Kern P,Heinzelmann T,et al.High- throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts part I:V2O5-WO3/TiO2 catalysts[J].Applied Catalysis B:Environmental,2010,95(1-2):39-47.
[5]  Tang Fushun,Xu Bolian,Shi Haihua,et al.The poisoning effect of Na+ and Ca2+ ions doped on the V2O5/TiO2 catalysts for selective catalytic reduction of NO by NH3[J].Applied Catalysis B:Environmental,2010,94(1-2):71-76.
[6]  姜烨,高翔,杜学森,等.钾盐对V2O5/TiO2催化剂NH3选择性催化还原NO反应的影响[J].中国电机工程学报,2008,28(35):21-26.Jiang Ye,Gao Xiang,Du Xuesen,et a1.Effects of potassium salts on selective catalytic reduction of NO with NH3 over V2O5/TiO2 catalysts[J].Proceedings of the CSEE,2008,28(35):21-26(in Chinese).
[7]  Li Junhua,Hao Jiming,Fu Lixin,et al.The activity and characterization of sol-gel Sn/Al2O3 catalyst for selective catalytic reduction of NOx in the presence of oxygen[J].Catalysis Today,2004,90(3-4):215-221.
[8]  Xu W,Yu Y,Zhang C,et al.Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst [J].Catalysis Communications,2008,9(6):1453-1457.
[9]  Wang Yanli,Liu Zhenyu,Zhan Liang,et al.Performance of an activated carbon honeycomb supported catalyst in simultaneous and NO removal [J].Chemical Engineering Science,2004,59(22-23):5283-5290.
[10]  张舒乐,刘晓肖,钟秦,等.Mn-Y/TiO2低温NH3选择性催化还原NO性能研究[J].中国电机工程学报,2011,31(35):1-6.Zhang Shule,Liu Xiaoxiao,Zhong Qin,et a1.Catalytic performance research of Mn-Y/TiO2 for low-temperature selective reduction of NO with NH3[J].Proceedings of the CSEE,2011,31(35):1-6(in Chinese).
[11]  Chen Xiongbo,Wang Haiqiang,Gao Shan,et al.Effect of pH value on the microstructure and deNOx catalytic performance of titanate nanotubes loaded CeO2 [J].Journal of Colloid and Interface Science,2012,377(1):131-136.
[12]  Chen Xiongbo,Wang Haiqiang,Wu Zhongbiao,et al.Novel H2Ti12O25-Confined CeO2 catalyst with remarkable resistance to alkali poisoning based on the “shell protection effect”[J].The Journal of Physical Chemistry C,2011,115(35):17479-17484.
[13]  Wang Haiqiang,Chen Xiongbo,Weng Xiaole,et al.Enhanced catalytic activity for selective catalytic reduction of NO over titanium nanotube-confined CeO2 catalyst[J].Catalysis Communications,2011,12(11):1042-1045.
[14]  陈雄波.铈改性钛基纳米管的脱硝活性及抗碱/碱土金属中毒性能研究[D].杭州:浙江大学,2012. Chen Xiongbo. Study on the deNOx activity and the resistance to alkali & alkaline earth metal poisoning of ceria doped titanate nanotubes[D]. Hangzhou: Zhejiang University, 2012.
[15]  Esch F,Fabris S,Zhou L,et al.Electron localization determines defect formation on ceria substrates [J].Science,2005,309(5735):752-755.
[16]  Liu Xiangwen,Zhou Kebin,Wang Lei,et al.Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods[J].Journal of the American Chemical Society,2009,131(9):3140-3141.
[17]  Wu Lijun,Wiesmann H,Moodenbaugh A,et al.Oxidation state and lattice expansion of CeO2-x nanoparticles as a function of particle size[J].Physical Review B,2004,69(12):125415.
[18]  Bavykin D,Friedrich J,Walsh F.Protonated titanates and tio2 nanostructured materials:synthesis,properties,and applications[J].Advanced Materials,2006,18(21):2807-2824.
[19]  Bavykin D,Carravetta M,Kulak A,et al.Application of magic-angle spinning NMR to examine the nature of protons in titanate nanotubes[J].Chemistry of Materials,2010,22(8):2458-2465.
[20]  Jr Edisson M,Jardim P,Marinkovic B,et al.Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes:a comparison study between nanostructured and bulk materials [J].Nanotechnology,2007,18(49):495710.
[21]  Beche E,Charvin P,Perarnau D,et al.Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz)[J].Surface and Interface Analysis,2008,40(3-4):264-267.
[22]  Larachi F,Pierre J,Adnot A,et al.Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts [J].Applied Surface Science,2002,195(1-4):236-250.
[23]  Campbell C,Peden C.Oxygen vacancies and catalysis on ceria surfaces[J].Science,2005,309(5735):713-714.
[24]  Dutta P,Pal S,Seehra M,et al.Concentration of Ce3+ and oxygen vacancies in cerium oxide nanoparticles [J].Chemistry of Materials,2006,18(21):5144-5146.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133