全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

风能资源分布特性的改进最大熵方法

DOI: 10.13334/j.0258-8013.pcsee.2014.34.010, PP. 6093-6100

Keywords: 最大熵原理,风速分布,风功率密度分布,判定系数,风能资源评估

Full-Text   Cite this paper   Add to My Lib

Abstract:

风速概率分布特性研究是风电场风能资源评估的基础,其结果将对风功率密度分布的估算产生影响。该文以最大熵原理的风速概率分布模型为基础,通过引入修正因子重新构造最大熵分布模型,并运用改进最大熵分布模型和两参数威布尔分布模型对风电场风速及风功率密度分布进行拟合,以判定系数和均方根误差两个指标来衡量该改进模型的适用性。研究结果表明,改进最大熵分布法与实测风速的分布更加匹配;而对风功率密度分布的拟合,虽然修正因子的不同指数值所对应的分布模型的拟合有一定起伏,但总存在某个值,其对应模型的拟合效果良好,由此可见,改进型最大熵分布可以适用于不同的风速与风功率密度分布状况,适合应用于风电场风能资源分布特性的研究以及区域风能资源的评估。

References

[1]  刘怡,肖立业,王海风,等.中国广域范围内大规模太阳能和风能各时间尺度下的时空互补特性研究[J].中国电机工程学报,2013,33(25):20-26. Liu Yi,Xiao Liye,Wang Haifeng,et al.Temporospatial complementarities between China’s wide-area wind and solar energy at different time scales[J].Proceedings of the CSEE,2013,33(25):20-26(in Chinese).
[2]  靳全,苏春.基于幂律过程和改进参数估计方法的风电场风能评估[J].中国电机工程学报,2010,30(35):107-111. Jin Quan,Su Chun.Wind energy assessment of wind farms based on power-law process and modified parameter estimation method[J].Proceedings of the CSEE,2010,30(35):107-111(in Chinese).
[3]  吉平,周孝信,武守远.采用平均风速参与因子法的区域风资源评估[J].中国电机工程学报,2012,32(19):10-15. Ji Ping,Zhou Xiaoxin,Wu Shouyuan.A region wind energy assessment approach using average wind speed participation factor[J].Proceedings of the CSEE,2012,32(19):10-15(in Chinese).
[4]  李剑楠,乔颖,鲁宗相,等.多时空尺度风电统计特性评价指标体系及其应用[J].中国电机工程学报,2013,33(13):53-61. Li Jiannan,Qiao Ying,Lu Zongxiang,et al.An evaluation index system for wind power statistical characteristics in multiple spatial and temporal scales and its application [J].Proceedings of the CSEE,2013,33(13):53-61(in Chinese).
[5]  叶林,刘鹏.基于经验模态分解和支持向量机的短期风电功率组合预测模型[J].中国电机工程学报,2011,31(31):102-108. Ye Lin,Liu Peng.Combined model based on EMD-SVM for short-term wind power prediction[J].Proceedings of the CSEE,2011,31(31):102-108(in Chinese).
[6]  丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究[J].中国电机工程学报,2005,25(10):107-110. Ding Ming,Wu Yichun,Zhang Lijun.Study on the algorithm to the probabilistic distribution parameters of wind speed in wind farms[J].Proceedings of the CSEE,2005,25(10):107-110(in Chinese).
[7]  潘晓春.风速概率分布参数估计的低阶概率权重矩法[J].中国电机工程学报,2012,32(5):131-136. Pan Xiaochun.Low-order probability-weighted moments method for wind speed probability distribution parameter estimation[J].Proceedings of the CSEE,2012,32(5):131-136(in Chinese).
[8]  Carta J A,Ramirez P,Velázquez S.A review of wind speed probability distributions used in wind energy analysis:Case studies in the Canary Islands[J].Renewable and Sustainable Energy Reviews,2009,13(5):933-955.
[9]  Zhou J,Erdem E,Li G,et al.Comprehensive evaluation of wind speed distribution models: a case study for North Dakota sites[J].Energy Conversion and Management,2010,51(7):1449-1458.
[10]  Akpinar E K,Akpinar S.An assessment on seasonal analysis of wind energy characteristics and wind turbine characteristics[J].Energy Conversion and Management,2005,46(11):1848-1867.
[11]  Haghifam M R,Omidvar M.Wind farm modeling in reliability assessment of power system[C]//9th International Conference on Probabilistic Methods Applied to Power Systems.KTH,Stockholm,Sweden,2006.
[12]  王松岩,于继来.短时风速概率分布的混合威布尔逼近方法[J].电力系统自动化,2010,34(6):89-93. Wang Songyan,Yu Jilai.Approximation of two peak wind speed probability density function with mixed Weibull distribution[J].Automation of Electric Power Systems,2010,34(6):89-93(in Chinese).
[13]  朱利平,卢一强,茆诗松.混合指数分布的参数估计[J].应用概率统计,2006,22(2):137-150. Zhu Liping,Lu Yiqiang,Mao Shisong.Estimation of parameters of mixed exponential distribution[J].Chinese Journal of Applied Probability and Statistics,2006,22(2):137-150(in Chinese).
[14]  Carta J A,Ramirez P.Use of finite mixture distribution models in the analysis of wind energy in the Canarian Archipelago[J].Energy Conversion and Management,2007,48(1):281-291.
[15]  Carta J A,Ramirez P.Analysis of two-component mixture Weibull statistics for estimation of wind speed distributions[J].Renewable Energy,2007,32(3):518-531.
[16]  Li G,Shi J.Application of Bayesian model averaging in modeling long-term wind speed distributions [J].Renewable Energy,2010,5(6):1192-1202.
[17]  Ramírez P,Carta J A.The use of wind probability distributions derived from the maximum entropy principle in the analysis of wind energy. a case study[J].Energy Conversion and Management,2006,47(15):2564-2577.
[18]  Jaynes E T.Information theory and statistical mechanics [J].Physical review,1957,106(4):620.
[19]  何正友,刘志刚,钱清泉.小波熵理论及其在电力系统中应用的可行性探讨[J].电网技术,2004,28(21):17-21. He Zhengyou,Liu Zhigang,Qian Qingquan.Study on wavelet entropy theory and adaptability of its application in power system[J].Power System Technology,2004,28(21):17-21(in Chinese).
[20]  Kapur J N.Maximum entropy models in science and engineering[M].India:John Wiley & Sons,1989:9-20.
[21]  Iuculano G,Nielsen L,Zanobini A,et al.The principle of maximum entropy applied in the evaluation of the measurement uncertainty[J].IEEE Transactions on Instrumentation and Measurement,2007,56(3):717-722.
[22]  程亮,童玲.最大熵原理在测量数据处理中的应用[J].电子测量与仪器学报,2009,23(1):47-51. Cheng Liang,Tong Ling.Measurement data processing based on maximum entropy method[J].Journal of Electronic Measurement and Instrument,2009,23(1):47-51(in Chinese).
[23]  Ouammi A,Dagdougui H,Sacile R,et al.Monthly and seasonal assessment of wind energy characteristics at four monitored locations in Liguria region (Italy) [J].Renewable and Sustainable Energy Reviews,2010,14(7):1959-1968.
[24]  Ohunakin O S.Wind resources in North-East geopolitical zone,Nigeria:An assessment of the monthly and seasonal characteristics[J].Renewable and Sustainable Energy Reviews,2011,15(4):1977-1987.
[25]  Carta J A,Bueno C,Ramírez P.Statistical modelling of directional wind speeds using mixtures of von Mises distributions:Case study[J].Energy Conversion and Management,2008,49(5):897-907.
[26]  Bechrakis D A,Deane J P,McKeogh E J.Wind resource assessment of an area using short term data correlated to a long term data set[J].Solar Energy,2004,76(6):725-732.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133