全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

生成风电功率时间序列场景的双向优化技术

DOI: 10.13334/j.0258-8013.pcsee.2014.16.004, PP. 2544-2551

Keywords: 风电并网,风电序列场景,场景消减技术,禁忌搜索方法,场景验证

Full-Text   Cite this paper   Add to My Lib

Abstract:

用少量的代表性风电功率序列场景来准确刻画风电随机特征,对含有风电电力系统的规划和运行具有重要意义。然而,代表性风电功率序列场景的生成,目前方法难以实现从庞大的发生空间中选择有效的代表场景,场景模拟的质量有待提高。为此,提出一种纵横双向优化的方法以生成日风电功率序列场景。纵轴方向,基于历史的日风电功率序列数据,采用最优消减技术,产生每个时段的代表场景;横轴方向,采用禁忌搜索方法,有选择地连接每个时段的代表场景从而形成所需的日风电功率序列代表场景。该方法无需预先知道风电功率的解析概率分布函数,仅需基于已有的历史序列数据,通过纵横双向优化,自动生成满足风电随机概率特征的日序列代表场景。以爱尔兰风电场数据为例,对所产生的单时段代表场景,在均值、方差、偏态和峰度4个指标上具有与历史数据相近的统计特性;将这些场景应用于含有风电电力系统的多时段最优潮流问题,从稳定性和准确性两个方面,验证了所提出的双向优化算法的有效性。

References

[1]  Heitsch H,Romisch W.Scenario tree generation for multi-stage stochastic programs[J].Stochastic Optimization Methods in Finance and Energy,International Series in Operations Research & Management Science,2011(163):313-341.
[2]  Kaut M.A copula-based heuristic for scenario generation [J].Computational Management Science,2013(25):1-15.
[3]  Kaut M,Wallace S W.Shape-based scenario generation using copulas[J].Computational Management Science,2011,8(1-2):181-199.
[4]  Høyland K,Wallace S W.Generating scenario trees for multistage decision problems[J].Management Science,2001,47(2):295-307.
[5]  Hochreiter R,Pflug G C.Financial scenario generation for stochastic multi-stage decision processes as facility location problems[J].Annals of Operations Research,2007,152(1):257-272.
[6]  Ross O.interest rate scenario generation for stochastic programming[D].Copenhagen:The Technical University of Denmark(DTU),2007(in Denmark).
[7]  Duque A J,Castronuovo E D,Sanchez I,et al.Optimal Operation of a pumped-storage hydro plant that compensates the imbalances of a wind power producer[J].Electric Power Systems Research,2011(81):1767-1777.
[8]  Pinson P,Madsen H,Nielsen H A,et al.From probabilistic forecasts to statistical scenarios of short-term wind power production[J].Wind Energy,2009(12):51-62.
[9]  Sutiene K,Pranevicius H.Scenario generation employing copulas[C]//Proceedings of the World Congress on Engineering 2007.London,UK:Newswood Limited,2007:777-784.
[10]  Sumalili J,Keko H,Miranda V,et al.Clustering-based wind power scenario reduction technique[C]//17th Power Systems Computation Conference 2011(PSCC 2011 Stockholm).Stockholm,Sweden:Curran Associates,2011:391-398.
[11]  黎静华,韦化,莫东.含风电场最优潮流的Wait-and-See模型与最优渐近场景分析[J].中国电机工程学报,2012,32(22):15-23. Li Jinghua,Wei Hua,Mo dong.Asymptotically optimal scenario analysis and wait-and-see model for optimal power flow with wind power[J].Proceedings of the CSEE,2012,32(22):15-23(in Chinese).
[12]  Demello P E,Ning Lu,Makarov Y.An optimized autoregressive forecast error generator for wind and load uncertainty study[J].Wind Energy,2011(14):967-976.
[13]  Kuska N G,Heitsch H,Romisch W.Scenario reduction and scenario tree construction for power management problems[C]//2003 IEEE Bologna PowerTech Conference.Bologna,Italy:IEEE,2003:114-120.
[14]  Dupacova J,Growe K N,Romish W.Scenario reduction in stochastic programming an approach using probability metrics[J].Math Program,2003(95):493-511.
[15]  Pappala V S,Erlich I,Rohrig K,et al.A stochastic model for the optimal operation of a wind-thermal power system[J].IEEE Transactions on Power Systems,2009,24(2):940-950.
[16]  Abbey C,Géza Joós.A stochastic optimization approach to rating of energy storage systems in wind-diesel isolated grids[J].IEEE Transactions on Power Systems,2009,24(1):418-426.
[17]  舒隽,李春晓,苏济归,等.复杂预想场景下电力系统备用优化模型[J].中国电机工程学报,2012,32(10):105-110. Shu Jun,Li Chunxiao,Su Jigui,et al.Optimal reserve dispatch model considering complicated contingency scenarios[J].Proceedings of the CSEE,2012,32(10):105-110(in Chinese).
[18]  陈璨,吴文传,张伯明,等.基于多场景技术的有源配电网可靠性评估[J].中国电机工程学报,2012,32(34):67-73. Chen Can,Wu Wenchuan,Zhang Boming,et al.An active distribution system reliability evaluation method based on multiple scenarios technique[J].Proceedings of the CSEE,2012,32(34):67-73(in Chinese).
[19]  高赐威,程浩忠,王旭.考虑场景发生概率的柔性约束电网规划模型[J].中国电机工程学报,2004,24(11):34-38. Gao Ciwei,Cheng Haozhong,Wang Xu.Electrical power network flexible planning model based on the probability of scene occurrence[J].Proceedings of the CSEE,2004,24(11):34-38(in Chinese).
[20]  邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,2005:51-60. Xing Wenxun,Xie Jinxing.Modern optimization methods[M].Beijing:Tsinghua University Press,2005:51-60(in Chinese).
[21]  EirGrid plc:System performance data[DB/OL].Ireland:EirGrid plc,2010[2010-10-.http://www.eirgrid.com/ operations/systemperformancedata/windgeneration/.
[22]  Kaut M,Wallace S W.Evaluation of scenario-generation methods for stochastic programming[J].Pacific Journal of Optimization,2007,3(2):257-271.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133