全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
棉花学报  2014 

棉花纤维强度主效QTLs分子标记辅助选择及聚合效应研究

DOI: 1002-7807(2014)05-0396-08, PP. 396-403

Keywords: 分子标记,辅助选择,QTL,聚合效应,纤维比强度

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用2个纤维品质优异材料0-153和新陆早24与2个大面积推广品种鲁棉研28和冀棉516为亲本,配制了(冀棉516×0-153)×(冀棉516×新陆早24)(Pop1)、(鲁棉研28×0-153)×(鲁棉研28×新陆早24)(Pop2)组合的双交F1群体,对3个纤维强度主效QTLs连锁的4个SSR标记进行辅助选择,并对不同QTLs的聚合效应进行了研究。结果表明,4个标记的选择都表现出显著的遗传效应,在2个群体中纯合显性基因/显性基因单株平均纤维比强度在31.21~32.62cN·tex-1,杂合基因型单株平均纤维比强度在30.77~32.50cN·tex-1,单个标记的选择效应在0.80~1.51cN·tex-1;QTL-1×QTL-3和QTL-2×QTL-3组合在2个群体中同时聚合该2个QTLs时单株平均纤维比强度达到33.40~34.08cN·tex-1,与2个QTLs均无单株相比选择效应在2.73~3.56cN·tex-1,与只含有其中1个QTL单株相比选择效应在1.12~3.02cN·tex-1。此外,聚合效应分析表明,QTL-1与QTL-2可能是同一个QTL,QTL-2与QTL-3之间存在明显的上位效应。本研究进一步明确了开展纤维强度的分子标记辅助聚合育种是可行的。

References

[1]  秦永生, 叶文雪, 刘任重, 等. 陆地棉纤维品质相关 QTL 定位研究[J]. 中国农业科学, 2009, 42(12): 4145-4154.
[2]  Qin Yongsheng, Ye Wenxue, Liu Renzhong, et al. QTL mapping for fiber quality properties in upland cotton[J]. Scientia Agricultura Sinica, 2009, 42(12): 4145-4154.
[3]  Kohei R J, Yu J, Park Y H, et al. Molecular mapping and characterization of traits controlling fiber quality in cotton[J]. Euphytica, 2001, 121(2): 163-172.
[4]  Shen Xinlian, Guo Wangzhen, Zhu Xiefei, et al. Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR markers[J]. Molecular breeding, 2005, 15(2): 169-181.
[5]  张天真, 郭旺珍. 棉花分子育种的现状, 问题与展望[J]. 中国农业科技导报, 2007, 9(2): 19-25.
[6]  Zhang Tianzhen, Guo Wangzhen. Molecular breeding in upland cotton: present status, problem and prospect[J]. Review of China Agricultural Science and Technology, 2007, 9(2): 19-25.
[7]  石玉真, 刘爱英, 李俊文, 等. 与棉花纤维强度连锁的主效 QTL 应用于棉花分子标记辅助育种[J]. 分子植物育种, 2007, 5(4): 521-527.
[8]  Shi Yuzhen, Liu Aiying, Li Junwen, et al. The major QTLs linked to fiber strength for cotton breeding program by molecular marker assisted selection[J]. Molecular Plant Breeding, 2007, 5(4):521-527.
[9]  Ribaut J M, Betrán J. Single large-scale marker-assisted selection (SLS-MAS)[J]. Molecular Breeding, 1999, 5(6): 531-541.
[10]  Guo Wangzhen, Zhang Tianzhen, Ding Yezhang, et al. Molecular marker assisted selection and pyramiding of two QTLs for fiber strength in upland cotton[J]. Acta Genetica Sinica, 2005, 32(12): 1275-1285.
[11]  Semagn K, Bj?覬rnstad ?魡, Skinnes H, et al. Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population[J]. Genome, 2006, 49(5): 545-555.
[12]  Rong J, Abbey C, Bowers J E, et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton(Gossypium)[J]. Genetics, 2004, 166(1): 389-417.
[13]  Qin Hongde, Guo Wangzhen, Zhang Yuanming, et al. QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L[J]. Theoretical and Applied Genetics, 2008, 117(6): 883-894.
[14]  Sun Fuding, Zhang Jianhong, Wang Shufang, et al. QTL mapping for fiber quality traits across multiple generations and environments in upland cotton[J]. Molecular Breeding, 2012, 30(1): 569-582.
[15]  Li Chengqi, Wang Xiaoyun, Dong Na, et al. QTL analysis for early-maturing traits in cotton using two upland cotton (Gossypium hirsutum L.) crosses[J]. Breeding Science, 2013, 63(2): 154.
[16]  Steele K A, Price A H, Witcombe J R, et al. QTLs associated with root traits increase yield in upland rice when transferred through marker-assistd selection[J]. Theoretical and Applied Genetics, 2013, 126(1): 101-108.
[17]  Miedaner T, Korzun V. Marker-assisted selection for disease resistance in wheat and barley breeding[J]. Phytopathology, 2012, 102(6): 560-566.
[18]  Chen F, Zhu S W, Xiang Y, et al. Molecular marker-assisted selection of the ae alleles in maize[J]. Genetics and Molecular Research, 2010, 9(2): 1074-1084.
[19]  何光明, 孙传清, 付永彩, 等. 水稻抗衰老IPT基因与抗白叶枯病基因Xa23的聚合研究[J]. 遗传学报, 2004, 31(8): 836- 841.
[20]  He Guangming, Sun Chuanqing, Fu Yongcai, et al. Pyramiding of senescence-inhibition IPT gene and Xa23 for resistance to bacterial blight in rice(Oryza sativa L.)[J]. Acta Genetica Sinica, 2004, 31(8): 836-841.
[21]  董章辉, 石玉真, 张建宏, 等. 棉花纤维长度主效 QTLs 的分子标记辅助选择及聚合效果研究[J]. 棉花学报, 2009, 21(4): 279-283.
[22]  Dong Zhanghui, Shi Yuzhen, Zhang Jianhong, et al. Molecular marker-assisted selection and pyramiding breeding of major QTLs for cotton fiber length[J]. Cotton Science, 2009, 21(4): 279-283.
[23]  Gutierrez O A, Jenkins J N, McCarty J C, et al. SSR markers closely associated with genes for resistance to root-knot nematode on chromosomes 11 and 14 of upland cotton[J]. Theoretical and Applied Genetics, 2010, 121(7): 1323-1337.
[24]  Jenkins J N, McCarty J C, Wubben M J, et al. SSR markers for marker assisted selection of root-knot nematode (Meloidogyneincognita) resistant plants in cotton (Gossypium hirsutum L.)[J]. Euphytica, 2012, 183(1): 49-54.
[25]  贾菲, 孙福鼎, 李俊文, 等. 多环境下陆地棉 (Gossypium hirsutum L.) 重组自交系铃重与衣分性状的 QTL分析[J]. 分子植物育种, 2011, 9(3): 318-326.
[26]  Jia Fei, Sun Fuding, Li Junwen, et al. Identification of QTL for boll weight and lint percentage of upland cotton (Gossypium hirsutum L.) RIL population in multiple environments[J]. Molecular Plant Breeding, 2011, 9(3): 318-326.
[27]  孔凡金, 李俊文, 龚举武, 等. 不同遗传背景下陆地棉衣分和子指性状 QTL 定位[J]. 中国农学通报, 2011, 27(18): 104- 109.
[28]  Kong Fanjin, Li junwen, Gong juwu, et al. QTL mapping for lint percentage and seed index in upland cotton (Gossypium hirsutum L.) of different genetic backgrounds[J]. Chinese Agricultural Science Bulletin, 2011, 27(18): 104-109.
[29]  袁友禄, 贾菲, 孙福鼎, 等. 与棉花优质纤维材料0-153高强纤维主效基因连锁的SSR标记: 中国, ZL 2011 1 0119427.X[P]. 2013-08-28.
[30]  Yuan Youlu, Jia Fei, Sun Fuding, et al. SSR markers linked by high-strength fiber major gene coming from excellent fiber quality cotton material 0-153: China, ZL 2011 1 0119427.X[P]. 2013-08-28.
[31]  孔凡金. 陆地棉高比强材料纤维品质及产量相关性状QTL定位[D]. 北京: 中国农业科学院, 2011.
[32]  Kong Fanjin. QTL mapping for fiber quality and yield-related traits in upland cotton with elite fiber quality[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011.
[33]  Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis[J]. Plant Molecular Biology Reporter, 1993, 11(2): 122-127.
[34]  Zhang Jun, Guo Wangzhen, Zhang Tianzhen. Molecular linkage map of allotetraploid cotton(Gossypium hirsutum L.× Gossypium barbadense L.) with a haploid population[J]. Theoretical and Applied Genetics, 2002, 105(8): 1166-1174.
[35]  袁有禄, 张天真, 郭旺珍, 等. 棉花高品质纤维性状QTLs的分子标记筛选及其定位[J]. 遗传学报, 2001, 28(12): 1151- 1161.
[36]  Yuan Youlu, Zhang Tianzhen, Guo Wangzhen et al. Molecular tagging and mapping of QTLs for super quality fiber properties in upland cotton[J]. Acta Genetica Sinica, 2001, 28(12): 1151- 1161.
[37]  沈新莲, 袁有禄, 郭旺珍, 等. 棉花高强纤维主效QTL的遗传稳定性及它的分子标记辅助选择效果[J]. 高技术通讯, 2001, 11(10): 13-16.
[38]  Shen Xinlian, Yuan Youlu, Guo Wangzhen, et al. Genetic stability of a major QTL for fiber strength and its marker-assisted selection in upland cotton[J]. High Technology Letters, 2000, 11(10): 13-16.
[39]  易成新, 汪业春, 郭旺珍, 等. 陆地棉分子标记辅助轮回选择聚合育种研究 Ⅳ.纤维比强度选择效果及对其他品质性状的影响[J]. 作物学报, 2004, 30(7): 680-685.
[40]  Yi Chengxin, Wang Yechun, Guo Wangzhen, et al. Pyramid breeding by marker-assisted recurrent selection in upland cotton Ⅳ. MAS efficiency for fiber strength and effects on other fiber qualities[J]. Acta Agronomica Sinica, 2004, 30(7): 680-685.
[41]  林忠旭, 冯常辉, 郭小平, 等. 陆地棉产量, 纤维品质相关性状主效QTL和上位性互作分析[J]. 中国农业科学, 2009, 42(9): 3036-3047.
[42]  Lin Zhongxu, Feng Changhui, Guo Xiaoping, et al. Genetic analysis of major QTLs and epistasis interaction for yield and fiber quality in upland cotton[J]. Scientia Agricultura Sinica, 2009, 42(9): 3036-3047.
[43]  Li Zhikang, Luo L J, Mei H W, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield[J]. Genetics, 2001, 158(4): 1737-1753.
[44]  Xing Y, Tan Y, Hua J, et al. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice[J]. Theoretical and Applied Genetics, 2002, 105(2/3): 248-257.
[45]  Hinze L L, Lamkey K R. Absence of epistasis for grain yield in elite maize hybrids[J]. Crop Science, 2003, 43(1): 46-56.
[46]  严建兵, 汤华, 黄益勤, 等. 玉米产量及构成因子主效和上位性 QTL 的全基因组扫描分析[J]. 科学通报, 2006, 51(12): 1413-1421.
[47]  Yan Jianbing, Tang Hua, Huang Yiqin, et al. A genome scan for quantitative trait loci affecting grain yield and its components of maize both in single- and two-locus levels[J]. Chinese Science Bulletin, 2006, 51(12): 1413-1421.
[48]  杨林, 邵慧, 吴青霞, 等. 小麦分蘖数和单株穗数 QTL 定位及上位性分析[J]. 麦类作物学报, 2013, 33(005): 875-882.
[49]  Yang Lin, Shao Hui, Wu Qingxia, et al. QTLs mapping and epistasis analysis for the number of tillers and spike number per plant in wheat[J]. Journal of Triticeae Crops, 2013, 33(5): 875- 882.
[50]  杨振, 裴宇峰, 谢圣男, 等. 大豆二粒荚长、宽相关QTL间上位效应和QE互作效应分析[J]. 中国农业科学, 2012, 45(12): 2346-2356.
[51]  Yang Zhen, Pei Yufeng, Xie Shengnan, et al. Epistatic effects and QE interaction effects of QTLs for two-seed pod length and width in soybean[J]. Scientia Agricultura Sinica, 2012, 45(12): 2346-2356.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133