全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  1993 

等谱黎曼流形的注记

, PP. 402-402

Keywords: 等谱,局部对称,共形平坦,Bochner-Kachler,流形,等距

Full-Text   Cite this paper   Add to My Lib

Abstract:

设(M,g)是紧致连通的黎曼流形。M上拉普拉斯算子△有离散谱spec(M,g)={0=λ_0<λ_1≤2≤…}。如果黎曼流形(M,g)和(M,g)有相同的谱,即spec(M,g)=spec(M,g),则说(M,g)和(M,g)是等谱的。谱理论的一个基本问题是等谱的黎曼流形是否等距。一般情况下这个问题是没有肯定答案的。第一个例子是Milnor给出的两个等谱但不等距的16维平环。本文证明下面两个定理定理1设(M,g)和(M,g)是两个紧致连通的局部对称的共形平坦黎曼流形,若它们是等谱的,则它们等距。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133