全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

基于惯性微流原理的微流控芯片用于血浆分离

DOI: 10.1360/972010-2380, PP. 1711-1719

Keywords: 惯性微流,微流控芯片,血浆,分离

Full-Text   Cite this paper   Add to My Lib

Abstract:

血浆是临床生化检验中一类广泛使用的样品,从全血中分离血浆是生命医学研究领域中一项非常重要的技术.惯性微流(inertialmicrofluidics)原理的主要特点是无需施加任何外力如电磁力等,仅依靠液体流动就可以在微通道内实现一定尺寸的微粒或细胞的聚焦流动.本研究基于惯性微流原理,设计并制备了具有不对称弯管结构通道的微流控芯片.采用制备的荧光微球作为模型样品考察了装置的性能,发现尺寸越大的微球保持惯性聚集流动的流速范围也越大.在此基础上,利用发展的芯片平台成功实现从稀释的血液样品中将血浆分离.使用芯片对样品进行两次分离,即二级分离后,血液中血红细胞的分离效率超过90%.该装置具有结构简单、体积小巧、操作方便等特点,不仅可以快速分离血浆,而且对血细胞基本无损,易于作为功能模块与现有的一些芯片实验室(labonachip,LOC)系统集成结合.

References

[1]  12 Rodriguez -Villarreal A I, Arundell M, Carmona M, et al. High flow rate microfluidic device for blood plasma separation using a range oftemperatures. Lab Chip, 2010, 10: 211-219??
[2]  13 Haeberle S, Brenner T, Zengerle R, et al. Centrifugal extraction of plasma from whole blood on a rotating disk. Lab Chip, 2006, 6:776-781??
[3]  14 Nakashima Y, Hata S, Yasuda T. Blood plasma separation and extraction from a minute amount of blood using dielectrophoretic and capillaryforces. Sens Actuators B: Chem, 2010, 145: 561-569??
[4]  15 Lenshof A, Ahmad-Tajudin A, Jaras K, et al. Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics.Anal Chem, 2009, 81: 6030-6037??
[5]  16 Di Carlo D, Irimia D, Tompkins R G, et al. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc NatlAcad Sci USA, 2007, 104: 18892-18897??
[6]  17 Di Carlo D, Edd J F, Irimia D, et al. Equilibrium separation and filtration of particles using differential inertial focusing. Anal Chem, 2008,80: 2204-2211??
[7]  21 Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I. Inertial microfluidics for continuous particle filtration and extraction. MicrofluidNanofluid, 2009, 7: 217-226
[8]  22 Mach A J, Di Carlo D. Continuous scalable blood filtration device using inertial microfluidics. Biotechnol Bioeng, 2010, 107: 302-311??
[9]  24 Kuntaegowdanahalli S S, Bhagat A A S, Kumar G, et al. Inertial microfluidics for continuous particle separation in spiral microchannels.Lab Chip, 2009, 9: 2973-2980??
[10]  1 Toner M, Irimia D. Blood on a chip. Annu Rev Biomed Eng, 2005, 7: 77-103??
[11]  2 Moorthy J, Beebe D J. In situ fabricated porous filters for microsystems. Lab Chip, 2003, 3: 62-66??
[12]  3 Ji H M, Samper V, Chen Y, et al. Silicon-based microfilters for whole blood cell separation. Biomed Microdevices, 2008, 10: 251-257??
[13]  4 Crowley T A, Pizziconi V. Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications. Lab Chip, 2005,5: 922-929??
[14]  5 VanDelinder V, Groisman A. Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device.Anal Chem, 2006, 78: 3765-3771??
[15]  6 Tachi T, Kaji N, Tokeshi M, et al. Simultaneous separation, metering, and dilution of plasma from human whole blood in a microfluidicsystem. Anal Chem, 2009, 81: 3194-3198??
[16]  7 Jaggi R D, Sandoz R, Effenhauser C S. Microfluidic depletion of red blood cells from whole blood in high-aspect-ratio microchannels.Microfluid Nanofluid, 2007, 3: 47-53
[17]  8 Faivre M, Abkarian M, Bickraj K, et al. Geometrical focusing of cells in a microfluidic device: An approach to separate blood plasma.Biorheology, 2006, 43: 147-159
[18]  9 Yang S, Undar A, Zahn J D. Blood plasma separation in microfluidic channels using flow rate control. ASAIO J, 2005, 51: 585-590??
[19]  10 Yang S, Undar A, Zahn J D. A microfluidic device for continuous, real time blood plasma separation. Lab Chip, 2006, 6: 871-880??
[20]  11 Kersaudy-Kerhoas M, Dhariwal R, Desmulliez M P Y, et al. Hydrodynamic blood plasma separation in microfluidic channels. MicrofluidNanofluid, 2010, 8: 105-114
[21]  18 Gossett D R, Di Carlo D. Particle focusing mechanisms in curving confined flows. Anal Chem, 2009, 81: 8459-8465??
[22]  19 Di Carlo D. Inertial microfluidics. Lab Chip, 2009, 9: 3038-3046??
[23]  20 Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I. Enhanced particle filtration in straight microchannels using shear-modulated inertialmigration. Phys Fluids, 2008, 20: 101702??
[24]  23 Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I. Continuous particle separation in spiral microchannels using dean flows and differentialmigration. Lab Chip, 2008, 8: 1906-1914??
[25]  25 Russom A, Gupta A K, Nagrath S, et al. Differential inertial focusing of particles in curved low-aspect-ratio microchannels. New J Phys,2009, 11: 075025??
[26]  26 Li C W, Cheung C N, Yang J, et al. PDMS-based microfluidic device with multi-height structures fabricated by single-step photolithographyusing printed circuit board as masters. Analyst, 2003, 128: 1137-1142??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133