全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

煤纳米孔隙结构的原子力显微镜研究

, PP. 1820-1827

Keywords: 煤纳米孔隙,原子力显微镜,煤层气,孔径分布,孔隙度

Full-Text   Cite this paper   Add to My Lib

Abstract:

煤纳米孔隙是认识煤中吸附气储集和运移的重要因素.提出一种研究煤纳米孔隙结构的新方法,该方法基于原子力显微镜(AFM)的纳米级分辨率,可直观清晰地观察煤的纳米孔隙特征,并可对煤纳米孔隙结构参数进行三维定量测量.分析结果表明煤中纳米孔主要为变质气孔和分子间的链间孔,变质气孔的形貌主要为圆形和椭圆形,随煤化程度的提高,变质气孔的发育程度不断增加;链间孔的形态变化较大,低煤级煤的链间孔大于高煤级煤,链间孔随煤级的升高逐渐减少.横切面分析可以有效地揭示煤纳米孔隙的几何学特征,相分析的参数是表征煤微孔隙度的重要参数之一,而粒度分析则可以检测煤纳米孔隙孔径分布特征.AFM对煤纳米孔隙的研究,将会给煤的微观结构和煤层气吸附机理的进一步深入研究提供新的研究手段.

References

[1]  2 Gilman A, Beckie R. Flow of coal-bed methane to a gallery. Transport Porous Med, 2000, 41: 1-16??
[2]  8 Xodot B B, 著; 宋世钊, 王佑安, 译. 煤与瓦斯突出. 北京: 中国工业出版社, 1966. 27-30
[3]  10 张慧. 煤孔隙的成因类型及其研究. 煤炭学报, 2001, 26: 40-44
[4]  11 Veeco Instruments Inc. Nanocope Software 6.13 User Guide, 2002
[5]  14 Ganning A P, Giardin T P, Faulds C B, et al. Surfactant-mediated solubilisation of amylose and visualization by atomic force microscopy.Carbohyd Polym, 2003, 51: 177-182??
[6]  15 Baker A A, Helbert W, Sugiyama J, et al. New insight into Cellulose structure by atomic force microscopy shows the Iα crystal phase atnear-atomic resolution. Biophys J, 2000, 79: 1139-1145??
[7]  16 Can M F, Cinar M, Benli B, et al. Determining the fiber size of nano structured sepiolite using atomic force microscopy (AFM). Appl ClaySci, 2010, 47: 217-222
[8]  17 Wang Z, Jiao N. Tung Steve, et al. Research on the atomic force microscopy-based fabrication of nanochannels on silicon oxide surfaces.Chinese Sci Bull, 2010, 55: 3466-3471??
[9]  18 Yumura M, Ohshima S, Kuriki S, et al. Atomic force microscopy observations of coals. In: Proceedings of International Conference onCoal Science 1. Tsukuba: NIMC, 1993. 394-397
[10]  19 Lawrie G A, Gentle I R, Fong C, et al. Atomic force microscopy studies of Bowen basin coal macerals. Fuel, 1997, 76: 1519-1526??
[11]  20 Cohen A D, Bailey A M, Myrick M L, et al. Applications of atomic force microscopy to study of artificially coalified peats. Soc Org Petrol,1998, 15: 23-27
[12]  25 Liu J, Jiang X, Huang X, et al. Morphological characterization of super fine pulverized coal particle. Part2. AFM investigation of singlecoal particle. Fuel, 2010, 89: 3884-3891
[13]  28 Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometre-scale pores in siliceous mudstones of theMississippian Barnett Shale. J Sediment Res, 2009, 79: 848-861??
[14]  31 赵兴龙, 汤达祯, 许浩, 等. 煤变质作用对煤储层孔隙系统发育的影响. 煤炭学报, 2010, 35: 1506-1511
[15]  32 吴俊, 金奎励, 童有德, 等. 煤孔隙理论及在煤瓦斯突出和抽放中的应用. 煤炭学报, 1991, 16: 86-95
[16]  33 秦勇. 中国高煤级煤的显微岩石学特征及结构演化. 徐州: 中国矿业大学出版社, 1995. 48-134
[17]  1 Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modelingstudy. 1. Isotherms and pore volume distributions. Fuel, 1999, 78: 1333-1344
[18]  3 Karacan C O, Okandan E. Adsorption and gas transport in coal microstructure: Investigation and evaluation by quantitative X-ray CTimaging. Fuel, 2001, 80: 509-520??
[19]  4 Mastalerz M, Drobniak A, Strapoc D, et al. Variations in pore characteristics in high volatile bituminous coals: Implications for coalbedgas content. Int J Coal Geol, 2008, 76: 205-216??
[20]  5 Radovic L R, Menon V C, Leóny León C A, et al. On the porous structure of coals: Evidence for an interconnected but constricted microporesystem and implications for coalbed methane recovery. Adsorption, 1997, 3: 221-232??
[21]  6 Radlinski A P, Mastalerz M, Hinde A L, et al. Application of SAXS and SANS in evaluation of porosity, pore size distribution and surfacearea of coal. Int J Coal Geol, 2004, 59: 245-271??
[22]  7 Zhang S, Tang S, Tang D, et al. The characteristics of coal reservoir pores and coal facies in Liulin district, Hedong coal field of China.Int J Coal Geol, 2010, 81: 117-127??
[23]  9 Gan H, Walker P L, Nandi S P. Nature of porosity in American coals. Fuel, 1972, 51: 272-277??
[24]  12 朱传凤, 王琛. 扫描探针显微术应用进展. 北京: 化学工业出版社, 2007. 2-6
[25]  13 Benitez J J, Matas A J, Heredia A. Molecular characterization of the plant biopolyester cutin by AFM and spectroscopic techniques. JStruct Biol, 2004, 147: 179-184??
[26]  21 Bruening F A, Cohen A D. Measuring surface properties and oxidation of coal macerals using atomic force microscope. Int J Coal Geol,2005, 63: 195-204??
[27]  22 Golubev Y A, Kovaleva O V, Yushkin N P. Observations and morphological analysis of supermolecular structure of natural bitumens byatomic force microscopy. Fuel, 2008, 87: 32-38??
[28]  23 杨起, 潘治贵, 汤达祯, 等. 煤结构的STM 和AFM 研究. 科学通报, 1994, 39: 633-635
[29]  24 常迎梅, 杨红果, 马腾武, 等. 基于AFM 的煤体结构研究. 现代科学仪器, 2006, 6: 71-72
[30]  26 Junno T, Deppert K, Montelius L, et al. Controlled manipulation of nanoparticles with an atomic force microscope. Appl Phys Lett, 1995,66: 3627-3629??
[31]  27 郝琦. 煤的显微孔隙形态特征及其成因探讨. 煤炭学报, 1987, 4: 51-57
[32]  29 张新民, 张遂安, 钟铃文. 中国的煤层甲烷. 西安: 陕西科学技术出版社, 1991. 82-84
[33]  30 苏现波, 张丽萍, 林晓英. 煤阶对煤的吸附能力的影响. 天然气工业, 2005, 25: 19-21
[34]  34 Chalmers G R L, Bustin R M. The organic matter distribution and methane capacity of the lower Cretaceous strata of northeastern BritishColumbia, Canada. Int J Coal Geol, 2007, 70: 223-239??
[35]  35 Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north central Texas as onemodel for thermogenic shale-gas assessment. AAPG Bull, 2007, 91: 475-499??
[36]  36 Hover V C, Peacor D R, Walter L M. Relationship between organic matter and authigenic illite/smectite in Devonian Black Shales,Michigan and Illinois Basins, USA. In: Crossey L J, Loucks R G, Totten M W, eds. Siliciclastic Diagenesis and Fluid Flow: Concepts andApplications. Tusal: SEPM, 1996. 73-83
[37]  37 Hirono T, Lin W, Nakashima S. Pore space visualization of rocks using an atomic force microscope. Int J Rock M Sci, 2006, 43: 317-320??
[38]  38 Stoeckli F, Hugi-Cleary D, Centenob T A. The characterization of solids by adsorption and immersion techniques and by AFM/STM. JEur Ceram Soc, 1998, 18: 1177-1185??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133