全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

碳纳米管在热管理材料中的应用

DOI: 10.1360/N972014-00063, PP. 2840-2850

Keywords: 碳纳米管,碳纳米管薄膜,碳纳米管阵列,复合材料,热界面材料

Full-Text   Cite this paper   Add to My Lib

Abstract:

碳纳米管由于具有优异的导热、导电和机械性能,为开发多功能导热材料提供了技术支持.本文综述了近年来碳纳米管在热管理材料领域的研究现状,探讨了碳纳米管在改性导热填料、各向异性碳纳米管薄膜导热膜材料以及复合热界面材料的研究与应用现状,并提出高密度、高取向碳纳米管薄膜及大管径碳纳米管阵列复合薄膜材料有望成为解决未来高频、高速器件、柔性器件等散热问题的优良材料体系之一.

References

[1]  1 Berber S, Kwon Y K, Tománek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett, 2000, 84: 4613-4616
[2]  2 Cao J X, Yan X H, Xiao Y, et al. Thermal conductivity of zigzag single-walled carbon nanotubes: Role of the umklapp process. Phys Rev B, 2004, 69: 073407
[3]  3 Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett, 2001, 87: 215502
[4]  8 Choi E S, Brooks J S, Eaton D L, et al. Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J Appl Phys, 2003, 94: 6034-6039
[5]  9 Sandler J, Shaffer M S P, Prasse T, et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer, 1999, 40: 5967-5971
[6]  10 Qian D, Dickey E C, Andrews R, et al. Load transfer and deformation mechanisms in carbon nanotube—Polystyrene composites. Appl Phys Lett, 2000,76: 2868-2870
[7]  17 Yang S Y, Ma C M, Teng C C, et al. Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon, 2010, 48: 592-603
[8]  18 Kimura T, Ago H, Tobita M. Polymer composites of carbon nanotubes aligned by magnetic field. Adv Mater, 2002, 14: 1380-1383
[9]  19 Koziol K, Vilatela J, Moisala A, et al. High performance carbon nanotube fiber. Science, 2007, 318: 1892-1895
[10]  21 Zheng L X, O'Connell M J, Doorn S K, et al. Ultralong single-wall carbon nanotubes. Nat Mater, 2004, 3: 673-676
[11]  23 Yu A, Ramesh P, Itkis M E, et al. Graphite nanoplatelet-epoxy composite thermal interface materials. J Phys Chem C, 2007, 111: 7565-7569
[12]  24 Yu A, Ramesh P, Sun X, et al. Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites. Adv Mater, 2008, 20: 4740-4744
[13]  25 Shahil K M F, Balandin A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett, 2012, 12: 861-867
[14]  27 Chen H, Wei H, Chen M, et al. Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes, Appl Surf Sci, 2012, 283: 525-531
[15]  30 Endo M, Muramatsu H, Hayashi T, et al. Nanotechnology: “Buckypaper” from coaxial nanotubes. Nature, 2005, 433: 476-476
[16]  31 Ng S H, Wang J, Guo Z P, et al. Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim Acta, 2005, 51: 23-28
[17]  33 Inoue Y, Suzuki Y, Minami Y, et al. Anisotropic carbon nanotube papers fabricated from multiwalled carbon nanotube webs. Carbon, 2011, 49: 2437-2443
[18]  34 Li Y H, Zhao Y M, Roe M, et al. In-plane large single-walled carbon nanotube films: In situ synthesis and field-emission properties. Small, 2006, 2: 1026-1030
[19]  35 Lü R, Tsuge S, Gui X, et al. In situ synthesis and magnetic anisotropy of ferromagnetic buckypaper. Carbon, 2009, 47: 1141-1145
[20]  36 Meitl M A, Zhou Y, Gaur A, et al. Solution casting and transfer printing single-walled carbon nanotube films. Nano Lett, 2004, 4: 1643-1647
[21]  37 Chen J, Liu Y, Minett A I, et al. Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery. Chem Mater, 2007, 19: 3595-3597
[22]  38 Wang D, Song P, Liu C, et al. Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology, 2008, 19: 075609
[23]  41 Cheng H, Li F, Su G, et al. Large-scale and low cost synthesis of single-walled catbon nanotubes by the catalytic pyrolysis of htdrocarbons. Appl Phys Lett, 1998, 72: 3281-3284
[24]  42 Dai H, Rinzler A G, Nikolaev P, et al. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett, 1996, 260: 471-475
[25]  43 Zhang L, Zhang G, Liu C, et al. High density carbon nanotube buckypapers with superior transport and mechanical properties. Nano Lett, 2012, 12: 4848-4852
[26]  46 Cheng Q, Bao J, Park J G, et al. High mechanical performance composites conductor: Multi-walled carbon nanotube sheet/bismaleimide nanocomposites. Adv Funct Mater, 2009, 19: 3219-3225
[27]  47 ?pitalsk? Z, Aggelopoulos C, Tsoukleri G, et al. The effect of oxidation treatment on the properties of multi-walled carbon nanotube thin films. Mater Sci Eng, 2009, 165: 135-138
[28]  48 Casaos A A, Domínguez J M, Terrado E, et al. Surfactant-free assembling of functionalized single-walled carbon nanotube buckypapers. Carbon, 2010, 48: 1480-1488
[29]  49 Skákalová V, Kaiser A B, Weglikowska U D, et al. Effect of chemical treatment on electrical conductivity, infrared absorption, and Raman spectra of single-walled carbon nanotubes. J Phys Chem B, 2005, 109: 7174-7181
[30]  50 Cha S I, Kim K T, Lee K H, et al. Mechanical and electrical properties of cross-linked carbon nanotubes. Carbon, 2008, 46: 482-488
[31]  57 Chen H, Chen M, Di J, et al. Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials. J Phys Chem C, 2012, 116: 3903-3909
[32]  66 Shenogin S, Bodapati A, Xue L, et al. Effect of chemical functionalization on thermal transport of carbon nanotube composites. Appl Phys Lett, 2004, 85: 2229-2231
[33]  67 Lin W, Moon K S, Wong C P. A combined process of in situ functionalization and microwave treatment to achieve ultrasmall thermal expansion of aligned carbon nanotube-polymer nanocomposites: Toward applications as thermal interface materials. Adv Mater, 2009, 21: 2421-2424
[34]  69 Kaur S, Paravikar N, Helms B A, et al. Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces. Nat Commun, 2014, 5: 3082
[35]  66 Shenogin S, Bodapati A, Xue L, et al. Effect of chemical functionalization on thermal transport of carbon nanotube composites. Appl Phys Lett, 2004, 85: 2229-2231
[36]  67 Lin W, Moon K S, Wong C P. A combined process of in situ functionalization and microwave treatment to achieve ultrasmall thermal expansion of aligned carbon nanotube-polymer nanocomposites: Toward applications as thermal interface materials. Adv Mater, 2009, 21:2421-2424
[37]  68 Wang M, Chen H, Lin W, et al. Crack-free and scalable transfer of carbon nanotube arrays into flexible and highly thermal con-ductive composite film. ACS Appl Mater Interfaces, 2014, 6: 539-544
[38]  70 Taphouse J H, Smith O L, Marder S R, et al. A pyrenylpropyl phosphonic acid surface modifier for mitigating the thermal resistance of carbon nanotube contacts. Adv Funct Mater, 2014, 24: 465-471
[39]  71 Wu Y, Liu C H, Huang H, et al. Effects of surface metal layer on the thermal contact resistance of carbon nanotube arrays. Appl Phys Lett,2005, 87: 213108
[40]  72 Panzer M A, Zhang G, Mann D, et al. Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. J Heat Transf,2008, 135: 052401 ?
[41]  4 Liu J, Michel B, Rencz M, et al. Recent progress of thermal interface material research—An overview. In: IEEE, ed. 14th International Workshop on Thermal Investigations of ICs and Systems. Grenoble: EDA Publishing, 2008. 156-162
[42]  5 Chung D D L. Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon, 2012, 50: 3342-3353
[43]  6 Zhang K, Chai Y, Yuen M M F, et al. Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling. Nano- technology, 2008, 19: 215706
[44]  7 Biercuk M J, Llaguno M C, Radosavljevic M, et al. Carbon nanotube composites for thermal management. Appl Phys Lett, 2002, 80: 2767-2769
[45]  11 Tang B Z, Xu H. Preparation, alignment, and optical properties of soluble polyphenylacetylene wrapped carbon nanotubes. Macromolecules, 1999, 32: 2569-2576
[46]  12 Jia Z J, Wang Z, Xu C, et al. Study on poly(methyl methacrylate)/carbon nanotube composites. Mater Sci Eng A: Struct, 1999, 271: 395-400
[47]  13 Riggs J E, Guo Z, Carroll D L, et al. Strong luminescence of solubilized carbon nanotubes. J Am Chem Soc, 2000, 122: 5879-5880
[48]  14 Wang S, Liang R, Wang B, et al. Epoxide terminated carbon nanotubes. Carbon, 2007, 45: 3042-3059
[49]  15 Cheng Q, Bao J, Wang X, et al. High Nanotube Loading Composites with Long MWNTs and Epoxide Grafting Functionalization. Bristol UK: SAMPE, 2009
[50]  16 Katz E, Willner I. Biomolecule functionalized carbon nanotubes: Applications in nanobioelectronics. Chem Phys Chem, 2004, 5: 1085-1104
[51]  20 Cheng Q, Bao J, Park J, et al. High mechanical performance composite conductor: Multi-walled carbon nanotube sheet/bismaleimide nanocomposites. Adv Funct Mater, 2009, 19: 3219-3225
[52]  22 He Z, Zhang X, Chen M, et al. Effect of filler structure of carbon nanomaterials on the electrical, thermal, and rheological properties of epoxy composites. J Appl Polym Sci, 2013, 129: 3366-3372
[53]  26 Xu Y, Leong C K, Chung D D L, et al. Carbon nanotube thermal pastes for improving thermal contacts. J Electron Mater, 2007, 36: 1181-1187
[54]  28 Whitby R L D, Fukuda T, Maekawa T, et al. Geometric control and tuneable pore size distribution of buckypaper and buckydiscs. Carbon, 2008, 46: 949-956
[55]  29 Xu G, Zhang Q, Zhou W, et al. The feasibility of producing MWCNT paper and strong MWCNT film from VACNT array. Appl Phys A Mater Sci Proc, 2008, 92: 531-539
[56]  32 Landi B J, Ganter M J, Schauerman C M, et al. Lithiumion capacity of single wall carbon nanotube paper electrodes. J Phys Chem C, 2008, 112: 7509-7515
[57]  39 李清文, 陈宏源, 陈名海. 大面积自支撑碳纳米管纸及其制备方法, 中国专利, 201110170808.0, 2012-02-15
[58]  40 Li Y L, Kinloch I A, Windle A H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science, 2004, 340: 276-278
[59]  44 Hone J, Llaguno M C, Nemes N M, et al. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl Phys Lett, 2000, 77: 666-668
[60]  45 Gonnet P, Liang Z, Choi E S, et al. Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites. Curr Appl Phys, 2006, 6: 119-122
[61]  51 Chen I W P, Liang R, Zhao H, et al. Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking. Nanotechnology, 2011, 22: 485708
[62]  52 Hone J, Whitney M, Piskoti C, et al. Thermal conductivity of single-walled carbon nanotubes. Phys Rev B, 1999, 59: 2514-2516
[63]  53 Sinha S, Barjami S, Iannacchione G, et al. Off-axis thermal properties of carbon nanotube films. J Nanopart Res, 2005, 7: 651-657
[64]  54 Hong W, Tai N H. Investigations on the thermal conductivity of composites reinforced with carbon nanotubes. Diam Relat Mater, 2008, 17: 1577-1581
[65]  55 Prasher R S, Hu X J, Chalopin Y, et al. Turning carbon nanotubes from exceptional heat conductors into insulators. Phys Rev Lett, 2009, 102: 105901
[66]  56 Xie H. Thermal and electrical transport properties of a self-organized carbon nanotube pellet. J Mater Sci, 2007, 42: 3695-3698
[67]  58 Xing Y, Zhang X, Chen H, et al. Enhancing buckypaper conductivity through co-deposition with copper nanowires. Carbon, 2013, 61: 501-506
[68]  59 Cao J, Men C, Chen H, et al. In-situ fabrication of expanded graphite-carbon nanotube nanocomposite with enhanced thermal conductivity. J Mater Sci Res, 2014, 3: 50-56
[69]  60 Zhu L, Hess D W, Wong C P. Assembling carbon nanotube films as thermal interface materials. In: IEEE, ed. 57th Electronic Components & Technology Conference. New York: IEEE, 2007. 2006-2010
[70]  61 Lin W, Xiu Y, Zhu L, et al. Assembling of carbon nanotube structures by chemical anchoring for packaging applications. In: IEEE, ed. 58th Electronic Components & Technology Conference. New York: IEEE, 2008. 421-426
[71]  62 Jiang H, Zhu L, Moon K, et al. Low temperature carbon nanotube film transfer via conductive polymer composites. Nanotechnology, 2007, 18: 125203
[72]  63 Ngo Q, Cruden B A, Cassell A M, et al. Thermal conductivity of carbon nanotube composite films. In: Carter R J, HauRiege C S, Lu T M, et al., eds. Synposium on Materials, Technology and Reliability for Advanced Interconnects and Low-k Dielectrics. Warrendale: Materials Research Society, 2004. 812: 179-184
[73]  64 Chai Y, Zhang K, Zhang M, et al. Carbon nanotube/copper composites for via filling and thermal management. In: IEEE, ed. 57th Electronic Components & Technology Conference. New York: IEEE, 2007. 1224-1229
[74]  65 Huang H, Liu C, Wu Y, et al. Aligned carbon nanotube composite films for thermal management. Adv Mater, 2005, 17: 1652-1656
[75]  68 Wang M, Chen H, Lin W, et al. Crack-free and scalable transfer of carbon nanotube arrays into flexible and highly thermal con-ductive composite film. ACS Appl Mater Interfaces, 2014, 6: 539-544
[76]  70 Taphouse J H, Smith O L, Marder S R, et al. A pyrenylpropyl phosphonic acid surface modifier for mitigating the thermal resistance of carbon nanotube contacts. Adv Funct Mater, 2014, 24: 465-471
[77]  71 Wu Y, Liu C H, Huang H, et al. Effects of surface metal layer on the thermal contact resistance of carbon nanotube arrays. Appl Phys Lett, 2005, 87: 213108
[78]  72 Panzer M A, Zhang G, Mann D, et al. Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. J Heat Transf, 2008, 135: 052401ter R J, HauRiege C S, Lu T M, et al., eds. Synposium on Materials, Technology and Reliability for Advanced Interconnects and Low-k Dielectrics. Warrendale: Materials Research Society, 2004. 812: 179-184
[79]  64 Chai Y, Zhang K, Zhang M, et al. Carbon nanotube/copper composites for via filling and thermal management. In: IEEE, ed. 57th Electronic Components & Technology Conference. New York: IEEE, 2007. 1224-1229
[80]  65 Huang H, Liu C, Wu Y, et al. Aligned carbon nanotube composite films for thermal management. Adv Mater, 2005, 17: 1652-1656
[81]  69 Kaur S, Paravikar N, Helms B A, et al. Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces. Nat Commun, 2014, 5: 3082

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133