1 Berber S, Kwon Y K, Tománek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett, 2000, 84: 4613-4616
[2]
2 Cao J X, Yan X H, Xiao Y, et al. Thermal conductivity of zigzag single-walled carbon nanotubes: Role of the umklapp process. Phys Rev B, 2004, 69: 073407
[3]
3 Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett, 2001, 87: 215502
[4]
8 Choi E S, Brooks J S, Eaton D L, et al. Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J Appl Phys, 2003, 94: 6034-6039
[5]
9 Sandler J, Shaffer M S P, Prasse T, et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer, 1999, 40: 5967-5971
[6]
10 Qian D, Dickey E C, Andrews R, et al. Load transfer and deformation mechanisms in carbon nanotube—Polystyrene composites. Appl Phys Lett, 2000,76: 2868-2870
[7]
17 Yang S Y, Ma C M, Teng C C, et al. Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon, 2010, 48: 592-603
[8]
18 Kimura T, Ago H, Tobita M. Polymer composites of carbon nanotubes aligned by magnetic field. Adv Mater, 2002, 14: 1380-1383
[9]
19 Koziol K, Vilatela J, Moisala A, et al. High performance carbon nanotube fiber. Science, 2007, 318: 1892-1895
[10]
21 Zheng L X, O'Connell M J, Doorn S K, et al. Ultralong single-wall carbon nanotubes. Nat Mater, 2004, 3: 673-676
[11]
23 Yu A, Ramesh P, Itkis M E, et al. Graphite nanoplatelet-epoxy composite thermal interface materials. J Phys Chem C, 2007, 111: 7565-7569
[12]
24 Yu A, Ramesh P, Sun X, et al. Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites. Adv Mater, 2008, 20: 4740-4744
[13]
25 Shahil K M F, Balandin A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett, 2012, 12: 861-867
[14]
27 Chen H, Wei H, Chen M, et al. Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes, Appl Surf Sci, 2012, 283: 525-531
[15]
30 Endo M, Muramatsu H, Hayashi T, et al. Nanotechnology: “Buckypaper” from coaxial nanotubes. Nature, 2005, 433: 476-476
[16]
31 Ng S H, Wang J, Guo Z P, et al. Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim Acta, 2005, 51: 23-28
[17]
33 Inoue Y, Suzuki Y, Minami Y, et al. Anisotropic carbon nanotube papers fabricated from multiwalled carbon nanotube webs. Carbon, 2011, 49: 2437-2443
[18]
34 Li Y H, Zhao Y M, Roe M, et al. In-plane large single-walled carbon nanotube films: In situ synthesis and field-emission properties. Small, 2006, 2: 1026-1030
[19]
35 Lü R, Tsuge S, Gui X, et al. In situ synthesis and magnetic anisotropy of ferromagnetic buckypaper. Carbon, 2009, 47: 1141-1145
[20]
36 Meitl M A, Zhou Y, Gaur A, et al. Solution casting and transfer printing single-walled carbon nanotube films. Nano Lett, 2004, 4: 1643-1647
[21]
37 Chen J, Liu Y, Minett A I, et al. Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery. Chem Mater, 2007, 19: 3595-3597
[22]
38 Wang D, Song P, Liu C, et al. Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology, 2008, 19: 075609
[23]
41 Cheng H, Li F, Su G, et al. Large-scale and low cost synthesis of single-walled catbon nanotubes by the catalytic pyrolysis of htdrocarbons. Appl Phys Lett, 1998, 72: 3281-3284
[24]
42 Dai H, Rinzler A G, Nikolaev P, et al. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett, 1996, 260: 471-475
[25]
43 Zhang L, Zhang G, Liu C, et al. High density carbon nanotube buckypapers with superior transport and mechanical properties. Nano Lett, 2012, 12: 4848-4852
[26]
46 Cheng Q, Bao J, Park J G, et al. High mechanical performance composites conductor: Multi-walled carbon nanotube sheet/bismaleimide nanocomposites. Adv Funct Mater, 2009, 19: 3219-3225
[27]
47 ?pitalsk? Z, Aggelopoulos C, Tsoukleri G, et al. The effect of oxidation treatment on the properties of multi-walled carbon nanotube thin films. Mater Sci Eng, 2009, 165: 135-138
[28]
48 Casaos A A, Domínguez J M, Terrado E, et al. Surfactant-free assembling of functionalized single-walled carbon nanotube buckypapers. Carbon, 2010, 48: 1480-1488
[29]
49 Skákalová V, Kaiser A B, Weglikowska U D, et al. Effect of chemical treatment on electrical conductivity, infrared absorption, and Raman spectra of single-walled carbon nanotubes. J Phys Chem B, 2005, 109: 7174-7181
[30]
50 Cha S I, Kim K T, Lee K H, et al. Mechanical and electrical properties of cross-linked carbon nanotubes. Carbon, 2008, 46: 482-488
[31]
57 Chen H, Chen M, Di J, et al. Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials. J Phys Chem C, 2012, 116: 3903-3909
[32]
66 Shenogin S, Bodapati A, Xue L, et al. Effect of chemical functionalization on thermal transport of carbon nanotube composites. Appl Phys Lett, 2004, 85: 2229-2231
[33]
67 Lin W, Moon K S, Wong C P. A combined process of in situ functionalization and microwave treatment to achieve ultrasmall thermal expansion of aligned carbon nanotube-polymer nanocomposites: Toward applications as thermal interface materials. Adv Mater, 2009, 21: 2421-2424
[34]
69 Kaur S, Paravikar N, Helms B A, et al. Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces. Nat Commun, 2014, 5: 3082
[35]
66 Shenogin S, Bodapati A, Xue L, et al. Effect of chemical functionalization on thermal transport of carbon nanotube composites. Appl Phys Lett, 2004, 85: 2229-2231
[36]
67 Lin W, Moon K S, Wong C P. A combined process of in situ functionalization and microwave treatment to achieve ultrasmall thermal expansion of aligned carbon nanotube-polymer nanocomposites: Toward applications as thermal interface materials. Adv Mater, 2009, 21:2421-2424
[37]
68 Wang M, Chen H, Lin W, et al. Crack-free and scalable transfer of carbon nanotube arrays into flexible and highly thermal con-ductive composite film. ACS Appl Mater Interfaces, 2014, 6: 539-544
[38]
70 Taphouse J H, Smith O L, Marder S R, et al. A pyrenylpropyl phosphonic acid surface modifier for mitigating the thermal resistance of carbon nanotube contacts. Adv Funct Mater, 2014, 24: 465-471
[39]
71 Wu Y, Liu C H, Huang H, et al. Effects of surface metal layer on the thermal contact resistance of carbon nanotube arrays. Appl Phys Lett,2005, 87: 213108
[40]
72 Panzer M A, Zhang G, Mann D, et al. Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. J Heat Transf,2008, 135: 052401 ?
[41]
4 Liu J, Michel B, Rencz M, et al. Recent progress of thermal interface material research—An overview. In: IEEE, ed. 14th International Workshop on Thermal Investigations of ICs and Systems. Grenoble: EDA Publishing, 2008. 156-162
[42]
5 Chung D D L. Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon, 2012, 50: 3342-3353
[43]
6 Zhang K, Chai Y, Yuen M M F, et al. Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling. Nano- technology, 2008, 19: 215706
[44]
7 Biercuk M J, Llaguno M C, Radosavljevic M, et al. Carbon nanotube composites for thermal management. Appl Phys Lett, 2002, 80: 2767-2769
[45]
11 Tang B Z, Xu H. Preparation, alignment, and optical properties of soluble polyphenylacetylene wrapped carbon nanotubes. Macromolecules, 1999, 32: 2569-2576
[46]
12 Jia Z J, Wang Z, Xu C, et al. Study on poly(methyl methacrylate)/carbon nanotube composites. Mater Sci Eng A: Struct, 1999, 271: 395-400
[47]
13 Riggs J E, Guo Z, Carroll D L, et al. Strong luminescence of solubilized carbon nanotubes. J Am Chem Soc, 2000, 122: 5879-5880
[48]
14 Wang S, Liang R, Wang B, et al. Epoxide terminated carbon nanotubes. Carbon, 2007, 45: 3042-3059
[49]
15 Cheng Q, Bao J, Wang X, et al. High Nanotube Loading Composites with Long MWNTs and Epoxide Grafting Functionalization. Bristol UK: SAMPE, 2009
[50]
16 Katz E, Willner I. Biomolecule functionalized carbon nanotubes: Applications in nanobioelectronics. Chem Phys Chem, 2004, 5: 1085-1104
[51]
20 Cheng Q, Bao J, Park J, et al. High mechanical performance composite conductor: Multi-walled carbon nanotube sheet/bismaleimide nanocomposites. Adv Funct Mater, 2009, 19: 3219-3225
[52]
22 He Z, Zhang X, Chen M, et al. Effect of filler structure of carbon nanomaterials on the electrical, thermal, and rheological properties of epoxy composites. J Appl Polym Sci, 2013, 129: 3366-3372
[53]
26 Xu Y, Leong C K, Chung D D L, et al. Carbon nanotube thermal pastes for improving thermal contacts. J Electron Mater, 2007, 36: 1181-1187
[54]
28 Whitby R L D, Fukuda T, Maekawa T, et al. Geometric control and tuneable pore size distribution of buckypaper and buckydiscs. Carbon, 2008, 46: 949-956
[55]
29 Xu G, Zhang Q, Zhou W, et al. The feasibility of producing MWCNT paper and strong MWCNT film from VACNT array. Appl Phys A Mater Sci Proc, 2008, 92: 531-539
[56]
32 Landi B J, Ganter M J, Schauerman C M, et al. Lithiumion capacity of single wall carbon nanotube paper electrodes. J Phys Chem C, 2008, 112: 7509-7515
40 Li Y L, Kinloch I A, Windle A H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science, 2004, 340: 276-278
[59]
44 Hone J, Llaguno M C, Nemes N M, et al. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl Phys Lett, 2000, 77: 666-668
[60]
45 Gonnet P, Liang Z, Choi E S, et al. Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites. Curr Appl Phys, 2006, 6: 119-122
[61]
51 Chen I W P, Liang R, Zhao H, et al. Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking. Nanotechnology, 2011, 22: 485708
[62]
52 Hone J, Whitney M, Piskoti C, et al. Thermal conductivity of single-walled carbon nanotubes. Phys Rev B, 1999, 59: 2514-2516
54 Hong W, Tai N H. Investigations on the thermal conductivity of composites reinforced with carbon nanotubes. Diam Relat Mater, 2008, 17: 1577-1581
[65]
55 Prasher R S, Hu X J, Chalopin Y, et al. Turning carbon nanotubes from exceptional heat conductors into insulators. Phys Rev Lett, 2009, 102: 105901
[66]
56 Xie H. Thermal and electrical transport properties of a self-organized carbon nanotube pellet. J Mater Sci, 2007, 42: 3695-3698
[67]
58 Xing Y, Zhang X, Chen H, et al. Enhancing buckypaper conductivity through co-deposition with copper nanowires. Carbon, 2013, 61: 501-506
[68]
59 Cao J, Men C, Chen H, et al. In-situ fabrication of expanded graphite-carbon nanotube nanocomposite with enhanced thermal conductivity. J Mater Sci Res, 2014, 3: 50-56
[69]
60 Zhu L, Hess D W, Wong C P. Assembling carbon nanotube films as thermal interface materials. In: IEEE, ed. 57th Electronic Components & Technology Conference. New York: IEEE, 2007. 2006-2010
[70]
61 Lin W, Xiu Y, Zhu L, et al. Assembling of carbon nanotube structures by chemical anchoring for packaging applications. In: IEEE, ed. 58th Electronic Components & Technology Conference. New York: IEEE, 2008. 421-426
[71]
62 Jiang H, Zhu L, Moon K, et al. Low temperature carbon nanotube film transfer via conductive polymer composites. Nanotechnology, 2007, 18: 125203
[72]
63 Ngo Q, Cruden B A, Cassell A M, et al. Thermal conductivity of carbon nanotube composite films. In: Carter R J, HauRiege C S, Lu T M, et al., eds. Synposium on Materials, Technology and Reliability for Advanced Interconnects and Low-k Dielectrics. Warrendale: Materials Research Society, 2004. 812: 179-184
[73]
64 Chai Y, Zhang K, Zhang M, et al. Carbon nanotube/copper composites for via filling and thermal management. In: IEEE, ed. 57th Electronic Components & Technology Conference. New York: IEEE, 2007. 1224-1229
[74]
65 Huang H, Liu C, Wu Y, et al. Aligned carbon nanotube composite films for thermal management. Adv Mater, 2005, 17: 1652-1656
[75]
68 Wang M, Chen H, Lin W, et al. Crack-free and scalable transfer of carbon nanotube arrays into flexible and highly thermal con-ductive composite film. ACS Appl Mater Interfaces, 2014, 6: 539-544
[76]
70 Taphouse J H, Smith O L, Marder S R, et al. A pyrenylpropyl phosphonic acid surface modifier for mitigating the thermal resistance of carbon nanotube contacts. Adv Funct Mater, 2014, 24: 465-471
[77]
71 Wu Y, Liu C H, Huang H, et al. Effects of surface metal layer on the thermal contact resistance of carbon nanotube arrays. Appl Phys Lett, 2005, 87: 213108
[78]
72 Panzer M A, Zhang G, Mann D, et al. Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. J Heat Transf, 2008, 135: 052401ter R J, HauRiege C S, Lu T M, et al., eds. Synposium on Materials, Technology and Reliability for Advanced Interconnects and Low-k Dielectrics. Warrendale: Materials Research Society, 2004. 812: 179-184
[79]
64 Chai Y, Zhang K, Zhang M, et al. Carbon nanotube/copper composites for via filling and thermal management. In: IEEE, ed. 57th Electronic Components & Technology Conference. New York: IEEE, 2007. 1224-1229
[80]
65 Huang H, Liu C, Wu Y, et al. Aligned carbon nanotube composite films for thermal management. Adv Mater, 2005, 17: 1652-1656
[81]
69 Kaur S, Paravikar N, Helms B A, et al. Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces. Nat Commun, 2014, 5: 3082