全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

基于微流控芯片构建的肿瘤细胞三维共培养模型

DOI: 10.1360/N972014-00337, PP. 2868-2876

Keywords: 微环境,三维共培养,微流控芯片,细胞迁移

Full-Text   Cite this paper   Add to My Lib

Abstract:

在肿瘤及相伴血管生长过程中,微环境中的多种理化因素协同地发挥着重要的作用.传统体外实验多借助于Transwell等模型,在单一因素下考察细胞生物学效应,并不能反映在体的多因素微环境.基于微流控技术,本文构建了一种新的多细胞共培养模型,整合了多环境维度(二维/三维)、细胞与细胞及细胞与胞外基质相互作用、不同生化因子的浓度梯度、细胞区域性等多个重要因素,形成微环境,并能实时监测细胞的迁移和侵袭等响应.为评价该模型的可行性和功能上的独特优势,我们模拟了肿瘤细胞(HepG2,CAOV-3)和人脐静脉内皮细胞(HUVECs)共存的三维微环境,考察了它们共培养时相互诱导向三维基质材料中的迁移情况.结果表明,在三维共培养模型中细胞能够相互影响并出现明显形态差异;2种肿瘤细胞的诱导均使HUVECs迁移能力显著提高;同时2种不同肿瘤细胞出现了与其病理特质(HepG2低浸润,CAOV-3高浸润)相对应的迁移能力差异.以上结果表明,该模型可望为研究肿瘤微环境下的相关问题提供一个相对简便且更具整合价值的研究平台.

References

[1]  8 Fukumura D, Jain R K. Tumor microvasculature and microenvironment: Targets for anti-angiogenesis and normalization. Microvasc Res, 2007, 74: 72-84
[2]  9 Keenan T M, Folch A. Biomolecular gradients in cell culture systems. Lab Chip, 2007, 8: 34
[3]  10 Warrick J W, Murphy W L, Beebe D J. Screening the cellular microenvironment: A role for microfluidics. IEEE Rev Biomed Eng, 2008, 1: 75-93
[4]  11 Coussens L M, Werb Z. Inflammation and cancer. Nature, 2002, 420: 860-867
[5]  12 Trietsch S J, Israels G D, Joore J, et al. Microfluidic titer plate for stratified 3D cell culture. Lab Chip, 2013, 13: 3548-3554
[6]  13 Kornelia P, Raghu K. The role of the microenvironment in mammary gland development and cancer. Cold Spring Harbor Persp Biol, 2010, 2: a3244
[7]  14 Kumar S, Weaver V M. Mechanics, malignancy, and metastasis: The force journey of a tumor cell. Cancer Metastasis Rev, 2009, 28: 113-127
[8]  15 Harris A L. Hypoxia—A key regulatory factor in tumour growth. Nat Rev Cancer, 2002, 2: 38-47
[9]  17 Funamoto K, Zervantonakis I K, Liu Y, et al. A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment. Lab Chip, 2012, 12: 4855
[10]  20 Sia S K, Whitesides G M. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis, 2003, 24: 3563-3576
[11]  21 Walker G M, Zeringue H C, Beebe D J. Microenvironment design considerations for cellular scale studies. Lab Chip, 2004, 4: 91-97
[12]  24 Zheng W, Jiang B, Wang D, et al. A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab Chip, 2012, 12: 3441
[13]  25 Ota H, Yamamoto R, Deguchi K, et al. Three-dimensional spheroid-forming lab-on-a-chip using micro-rotational flow. Sensors Actuators B Chem, 2010, 147: 359-365
[14]  28 Ye Q, Cai S, Dai X, et al. Effects of matrix viscoelasticity on HepG2 cell metastasis in a microfluidic device. J Med Biol Eng, 2013, 33: 163-170
[15]  29 Chung S, Sudo R, Mack P J, et al. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip, 2009, 9: 269-275
[16]  30 Stonans I, Stonane E, Russwurm S, et al. HepG2 human hepatoma cells express multiple cytokine genes. Cytokine, 1999, 11: 151-156
[17]  32 Shayesteh L, Lu Y, Kuo W L, et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet, 1999, 21: 99-102
[18]  33 Yamazaki D, Kurisu S, Takenawa T. Regulation of cancer cell motility through actin reorganization. Cancer Sci, 2005, 96: 379-386
[19]  34 Cao L, Zhou Y, Zhai B, et al. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC Gastroenterol, 2011, 11: 71
[20]  35 Liu J, Tan Y, Zhang H, et al. Soft fibrin gels promote selection and growth of tumorigenic cells. Nat Mater, 2012, 11: 734-741
[21]  36 Ingber D E. The architecture of life. Sci Am, 1998, 278: 48-57
[22]  1 Wittekind C, Neid M. Cancer invasion and metastasis. Oncology, 2005, 69(Suppl 1): 14-16
[23]  2 Dudjak L A. Cancer metastasis. Semin Oncol Nurs, 1992, 8: 40-50
[24]  3 Weber C E, Kuo P C. The tumor microenvironment. Surg Oncol, 2012, 21: 172-177
[25]  4 Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst, 1990, 82: 4-6
[26]  5 Witz I P. Tumor-microenvironment interactions: Dangerous liaisons. Adv Cancer Res, 2008, 100: 203-229
[27]  6 Joyce J A, Pollard J W. Microenvironmental regulation of metastasis. Nat Rev Cancer, 2009, 9: 239-252
[28]  7 Folkman J. Angiogenesis: An organizing principle for drug discovery? Nat Rev Drug Discov, 2007, 6: 273-286
[29]  16 Cairns R A, Kalliomaki T, Hill R P. Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res, 2001, 61: 8903-8908
[30]  18 Wang R, Xu J, Juliette L, et al. Three-dimensional co-culture models to study prostate cancer growth, progression, and metastasis to bone. Semin Cancer Biol, 2005, 15: 353-364
[31]  19 Bokhari M, Carnachan R J, Cameron N R, et al. Culture of HepG2 liver cells on three dimensional polystyrene scaffolds enhances cell structure and function during toxicological challenge. J Anatomy, 2007, 211: 567-576
[32]  22 Kurth F, Eyer K, Franco-Obregón A, et al. A new mechanobiological era: Microfluidic pathways to apply and sense forces at the cellular level. Curr Opin Chem Biol, 2012, 16: 400-408
[33]  23 Yeh C, Tsai S, Wu L, et al. Using a co-culture microsystem for cell migration under fluid shear stress. Lab Chip, 2011, 11: 2583
[34]  26 戴小珍, 蔡绍皙, 叶群芳, 等. 基于微流控芯片构建一种新的体外血管生成模型. 科学通报, 2011, 56: 2319-2327
[35]  27 宋振, 蔡绍皙, 陈斯佳, 等. 基于微流控芯片构建三维基质支架中的肿瘤细胞侵袭模型. 科学通报, 2012, 57: 2184-2191
[36]  31 Buick R N, Pullano R, Trent J M. Comparative properties of five human ovarian adenocarcinoma cell lines. Cancer Res, 1985, 45: 3668-3676

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133