全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

硅球密度绝对测量

DOI: 10.1360/972011-1710, PP. 1281-1289

Keywords: 阿伏加德罗常数,硅球密度,相移干涉法,氧化层厚度,精密测量

Full-Text   Cite this paper   Add to My Lib

Abstract:

单晶硅球密度的绝对测量是阿伏加德罗常数测量的关键技术,是目前国际热点研究领域.本文综述了包括我国在内的国际单晶硅球密度测量的最新进展,涉及硅球密度测量的技术原理、测量领域、影响因素、测量装置及最佳测量能力等,分析了硅球密度测量的主要难点和关键技术,预测了相关研究的技术前景及发展趋势.

References

[1]  11 Murrell J N. Avogadro and his constant. Helvetica Chim Acta, 2001, 84: 1314-1327??
[2]  12 Becker P, Friedrich H, Fujii K, et al. The Avogadro constant determination via enriched silicon-28. Meas Sci Tech, 2009, 20: 092002??
[3]  13 Fujii K, Waseda A, Kuramoto N, et al. Present state of the Avogadro constant determination from silicon crystals with natural isotopic compositions. IEEE Trans Instrum Meas, 2005, 54: 854-859??
[4]  14 Kuramoto N, Fujii K. Interferometric measurements of the diameter of a single-crystal silicon sphere. Rev Sci Instrum,1992, 63: 5320-5325??
[5]  15 Kenny M J, Leistner A J, Walsh C J, et al. Precision determination of the density of a single crystal silicon sphere and evaluation of Avogadro constant. IEEE Trans Instrum Meas, 2001, 50: 587-592??
[6]  16 Mizushima S, Ueki M, Fujii K. Mass measurement of 1 kg silicon spheres to establish a density standard. Metrologia, 2004, 41: S68-S74??
[7]  17 罗志勇, 杨丽峰, 顾英姿, 等. 固体密度基准研究. 科学通报, 2007, 52: 1382-1386
[8]  18 Fujii K, Tanaka M, Nezu Y, et al. Interferometric measurements of the diameters of single-crystal silicon spheres. Rev Sci Instrum, 1992, 63: 5320-5325??
[9]  19 Fujii K, Tanaka M. Accurate determination of density of a crystal silicon sphere. IEEE Trans Instrum Meas, 1993, 42: 395-400??
[10]  20 Nicolaus R A. Evaluation of Fizeau interferences by phase-shifting interferometry. Optik, 1991, 87: 23-26
[11]  21 Leistner G, Zozi G. Polishing a 1 kg silicon sphere for density standard. Appl Opt, 1987, 26: 600-601??
[12]  22 Leistner G, Giardini W. Fabrication and testing of precision spheres. Metrologia, 1991, 28: 503-506??
[13]  24 Surrel Y. Design of algorithms for phase measurements by the use of phase stepping. Appl Opt, 1996, 35: 51-54??
[14]  28 侯立周, 强锡富, 孙晓明. 几种任意步距步进相移算法的误差分析与对比. 光学技术, 1999, 25: 7-10
[15]  29 Luo Z Y, Gu Y Z, Zhang J, et al. Interferometric measurement of the diameter of a silicon sphere with a mechanical scanning method. IEEE Trans Instrum Meas, 2010, 59: 2991-2996??
[16]  30 Karomoto N. Interferometric determination of the diameter of a silicon sphere using a direct optical frequency tuning system. IEEE Trans Instrum Meas, 2003, 52: 631-635??
[17]  31 Karomoto N. Volume determination of a silicon sphere using an improved interferometer optical frequency tuning. IEEE Trans Instrum Meas, 2005, 54: 868-871??
[18]  32 Nicolaus R A. Absolute volume determination of a silicon sphere with the spherical interferometer of PTB. Metrologia, 2005, 42: 25-31
[19]  33 Nicolaus R A, Fujii K. Primary calibration of the volume of silicon spheres. Meas Sci Tech, 2006, 17: 2527-2539??
[20]  34 Nicolaus R A, Bonsch G. Absolute volume determination of a silicon sphere with the spherical interferometer of PTB. Metrologia, 2005, 42: 24-31 ??
[21]  35 Bonsch G, Bohme H. Phase-determination of Fizeau interferences by phase-shifting interferometry. Optik, 1989, 82: 161-164
[22]  36 Luo Z Y, Yang L F, Chen Y C. Error evaluation of cosine dependent algorithm in precision interference measurement. Acta Opt Sin, 2005, 25: 1629-1633
[23]  37 Luo Z Y, Yang L F, Chen Y C. A precision measuring system for the diameter of single crystal silicon sphere. Acta Metrol Sin, 2005, 26: 289-294
[24]  38 Luo Z Y, Yang L F, Chen Y C. Phase-shift algorithm research based on multiple-beam interference principle. Acta Phys Sin, 2005, 54: 3051-3057
[25]  39 罗志勇, 杨丽峰, 陈允昌. 基于多光束干涉原理的相移算法研究. 物理学报, 2005, 54: 3051-3057
[26]  40 罗志勇, 陈朝晖, 顾英姿, 等. 基于数值模拟的高准确度五步相移算法研究. 光学学报, 2006, 26: 1687-1690
[27]  41 Luo Z Y, Dai J L. Study on an improved phase-shifting five-interferogram algorithm. Chin Opt Lett, 2008, 6: 342-345??
[28]  42 Kuramoto N, Fujii K. A study on the absolute measurement of the density of silicon crystals. Bull NRLM, 1997, 47: 14-15
[29]  43 Johnson D P. Geometrical consideration in the measurement of the volume of an approximate sphere. J Res Natl Bur Stand Sect A, 1974, 78: 41-48
[30]  44 Picard A. Mass determinations of a 1 kg silicon sphere for the Avogadro project. Metrologia, 2006, 43: 46-52??
[31]  45 Borys M, Gi?ser M, Mecke M. Mass determination of silicon spheres used for the Avogadro project. Measurement, 2007, 40: 785-790??
[32]  46 Picard A, Bignell N, Borys M, et al. Mass comparison of the 1 kg silicon sphere AVO#3 traceable to the international prototype K. Metrologia, 2009, 46: 1-10??
[33]  47 Busch I, Danzebrink H, Krummy M, et al. Oxide layer mass determination at the silicon sphere of the Avogadro project. IEEE Trans Instrum Meas, 2009, 58: 891-896??
[34]  48 Zhang J T, Li Y, Luo Z Y, et al. Determination of mean thickness of an oxide layer on a silicon sphere by spectroscopic ellipsometry. Chin Phys Lett, 2010, 27: 050601??
[35]  49 张继涛, 李岩, 罗志勇. 一种可溯源的光谱椭偏仪标定方法. 物理学报, 2010, 39: 186-191
[36]  50 Mu T K, Zhang C M. A novel polarization interferometer for measuring upper atmospheric winds. Chin Phys Lett, 2010, 19: 060702
[37]  51 Chen X F, Yang X D, Han L. Two-pion interferometry at small relative momentum for pion sources with transverse and longitudinal ex-pansions in relativistic heavy ion collisions. Chin Phys Lett, 2004, 13: 341-343
[38]  52 Zhang J M, Zhang Y, Xu K W, et al. Young’s modulus surface and Poisson’s ratio curve for tetragonal crystals. Chin Phys Lett, 2008, 17: 1565-1573
[39]  53 Sun J T, Du S X, Xiao W D, et al. Effect of strain on geometric and electronic structures of graphene on Ru(0001) surface. Chin Phys Lett, 2009, 18: 3008-3013
[40]  54 Qiao Z X, Sun Y, He W Y, et al. Raman scattering of polycrystalline GaSb thin films grownby co-evapouration process. Chin Phys Lett, 2009, 18: 2012-2015
[41]  1 赵克功. 更新计量基本单位[kg]定义的研究现状. 计量学报, 2001, 22: 133-141
[42]  2 罗志勇, 杨丽峰, 陈允昌. 精密干涉测量中余弦依赖算法的误差研究. 光学学报, 2005, 25: 3051-3057
[43]  3 李岩, 张继涛, 罗志勇. 阿伏加德罗常数测量与千克重新定义. 科学通报, 2011, 56: 717-724
[44]  4 张继涛, 罗志勇, 赵克功. 阿伏加德罗常数测量研究最新进展. 计量学报, 2012, 33: 39-42
[45]  5 罗志勇. 质量自然基准的研究进展及发展方向. 计量学报, 2004, 25: 138-141
[46]  6 Becker P. Determination of the Avogadro constant: A contribution to the new definition of the mass unit kilogram. Eur Phys J, 2009, 172: 343-352
[47]  7 Becker P. Tracing the definition of the kilogram to the Avogadro constant using a silicon single crystal. Metrologia, 2003, 40: 366-375??
[48]  8 Fujii K, Kuramoto N. Absolute measurement of the density of crystal silicon sphere in vacuo for a determination of Avogadro constant. IEEE Trans Instrum Meas, 1995, 52: 542-545
[49]  9 Mana G, Zosi G. The Avogadro constant. Rev Nuovo Cimento, 1995, 18: 1-23
[50]  10 Becker P. History and progress in the accurate determination of the Avogadro constant. Rep Prog Phys, 2001, 64: 1945-2008??
[51]  23 Lai G M, Yatagai T. Generalized phase-shifting interferometery. J Opt Soc Am A, 1991, 8: 822-827??
[52]  25 Hariharan P. Digital phase-stepping interferometry: Effects of multiply reflected beams. Appl Opt, 1987, 26: 2504-2505??
[53]  26 Vikram C S. Exact phase error effect on contrast measurement in four-step phase-shifting interferometry. Optik, 2000, 111: 563-564
[54]  27 Dorrio B V. Phase error calculation in a Fizeau interferometer by Fourier expansion of the intensity profile. Appl Opt, 1996, 35: 61-64??
[55]  55 Becker P, Schiel D, Pohl H J, et al. Large-scale production of highly enriched 28 Si for the precise determination of the Avogadro constant. Meas Sci Tech, 2006, 17: 1854-1860??
[56]  56 Ding T, Wan D, Bai R, et al. Silicon isotope abundance ratios and atomic weights of NBS-28 and other reference materials. Geochim Cosmochim Acta, 2005, 69: 5487-5494??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133