全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2013 

晶体材料基因组问题第一原理计算研究

DOI: 10.1360/csb2013-58-35-3623, PP. 3623-3632

Keywords: 材料基因组,第一原理计算,晶体材料,物性,密度泛函理论

Full-Text   Cite this paper   Add to My Lib

Abstract:

美国总统奥巴马于2011年6月发布了主要依靠先进计算机科学运算能力,以较小投入实现新材料研发速度倍翻为目标的材料基因组国家研究计划.根据对该问题的认知程度,本文首先简要地讨论了材料基因和材料基因组的起源、科学含义和研究意义,及其材料基因组研究对于材料科学和人类社会发展所可能产生的重要影响.然后,介绍了本课题组近10余年来所进行的采用第一原理计算方法研究晶体材料基因组相关基础问题的一些工作进展情况;重点介绍了晶体结构优化,弹性模量、电子与介电参数、晶体热膨胀系数等物理参数的计算,以及固体相变和固体中的粒子输运性质模拟等方面的第一原理计算理论研究方法的实现技术;讨论了相关研究针对低维晶体材料的算法扩展问题.

References

[1]  1 Materials Genome Initiative for Global Competitiveness. USA National Science and Technology Council, June 2011
[2]  2 Jain A, Hautier G, Moore C J, et al. A high-throughput infrastructure for density functional theory calculation. Comp Mater Sci, 2011, 50: 2295-2310
[3]  4 Gonze X, Amadon B, Anglade P M, et al. ABINIT: First-principles approach to material and nanosystem properties. Comput Phys Commun, 2009, 180: 2582-2615
[4]  7 Gonze X. First-principles responses of solid to atomic displacements and homogeneous electric fields: Implementation of a conjugate- gradient algorithm. Phys Rev B, 1997, 55: 10337-10354
[5]  16 Hedin L. New method for calculating the one-particle Green's function with approximation to the electron-gas problem. Phys Rev, 1965, 139: A796-A823
[6]  17 Loschen C, Carrasco J, Neyman K M, et al. First-principles LDA+U and GGA+U study of cerium oxides: Dependence on the effective U parameter. Phys Rev B, 2007, 75: 035115
[7]  20 Wang S Q, Ye H Q. Ab initio investigation of the pressure dependences of phonon and dielectric properties for III-V semiconductors. J Phys Condens Matter, 2005, 17: 4475-4488
[8]  22 Wang S Q. Effect of charge redistribution on the thermal-expansion behaviours in III-V semiconductors. J Phys Soc Jpn, 2009, 78: 024603
[9]  24 Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett, 1985, 55: 2471-2474
[10]  25 Alfe D. First-principles simulation of direct coexistence of solid and liquid aluminium. Phys Rev B, 2003, 68: 064423
[11]  26 Wang S Q. First-principles studies on the impact of proton disorder on physical properties of ice. Int J Quantum Chem, 2013, 113: 661-666
[12]  28 Wang S Q, Ye H Q, Yip S. First-principles studies on the pressure dependences of the stress-strain relationship and elastic stability of semiconductors. J Phys Conden Matter, 2006, 18: 395-409
[13]  32 Pavone P, Karch K, Schutt O, et al. Ab initio lattice dynamics of diamond. Phys Rev B, 1993, 48: 3156-3163
[14]  33 Wang S Q. Effect of charge redistribution on the thermal-expansion behaviours in III-V semiconductors. J Phys Soc Jpn, 2009, 78: 024603
[15]  34 Wang S Q. Studies on thermodynamic properties of III-V compounds by first-principles response-function calculation. Phys Status Solidi B-Basic Solid State Phys, 2009, 246: 1618-1627
[16]  36 Greenwood D A. The Boltzmann equation in the theory of electrical conduction in metals. Proc Phys Soc London, 1958, 71: 585-596
[17]  37 Silvestrelli P L, Alavi A, Parrinello M. Electrical-conductivity in ab initio simulations of metals: Application to liquid sodium. Phys Rev B, 1997, 55: 15515-15522
[18]  40 Maksimov E G, Wang S Q, Magnitskaya M V, et al. Effect of high pressure on the phonon spectra and superconductivity in ZrN and HfN. Supercond Sci Technol, 2009, 22: 075004
[19]  42 Ma S Y, Wang S Q. Ab initio calculation of intrinsic diffusion coefficients for boron in silicon at finite temperatures. Eur Phys J B, 2009, 72: 567-573
[20]  43 Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon film. Science, 2004, 306: 666-669
[21]  44 Wang S Q. Studies of physical and chemical properties of two-dimensional hexagonal crystals by first-principles calculation. J Phys Soc Jpn, 2010, 79: 064602
[22]  46 Ceder G. Opportunities and challenges for first-principles materials design and applications to Li battery materials. MRS Bull, 2010, 35: 693-701
[23]  3 Martin R M. Electronic Structure. Cambridge: Cambridge University Press, 2004
[24]  5 Gonze X, Rignanese G M, Verstraete M, et al. A brief introduction to the ABINIT software package. Zeit Kristallogr, 2005, 220: 558-562
[25]  6 Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140: A1133-A1138
[26]  8 Wang S Q, Ye H Q. Plane-wave pseudopotential study on mechanical and electronic properties for IV and III-V crystalline phases with zinc-blende structure. Phys Rev B, 2002, 66: 235111
[27]  9 Wang S Q, Ye H Q. A plane-wave pseudopotential study on III-V zinc-blende and wurtzite semiconductors under pressure. J Phys Condens Matter, 2002, 14: 9579-9587
[28]  10 Wang S Q, Ye H Q. First-principles study on the lonsdaleite phases of C, Si and Ge. J Phys Condes Matter, 2003, 15: L197-L202
[29]  11 Wang S Q, Ye H Q. First-principles study on elastic properties and phase stability of III-V compounds. Phys Status Solidi B Basic Res, 2003, 240: 45-54
[30]  12 Wang S Q, Ye H Q. Ab initio elastic constants for the lonsdaleite phases of C, Si and Ge. J Phys Condes Matter, 2003, 15: 5307-5314
[31]  13 Perdew J P, Levy M. Physical content of the exact Kohn-Sham orbital energies: Band gaps and derivative discontinuities. Phys Rev Lett, 1983, 51: 1884-1887
[32]  14 Becke A D. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648-5652
[33]  15 Xiao H, Tahir-Kheli J, Goddard W A. Accurate band gaps for semiconductors from density functional theory. J Phys Chem Lett, 2011, 2: 212-217
[34]  18 Baroni S, Giannozzi P, Testa A. Green's-function approach to linear response in solids. Phys Rev Lett, 1987, 58: 1861-1864
[35]  19 Gonze X. Perturbation expansion of variational principles at arbitrary order. Phys Rev A, 1995, 52: 1086-1095
[36]  21 Wang S Q. A comparative first-principles study of ZnS and ZnO in zinc blende structure. J Cryst Growth, 2006, 287: 185-188
[37]  23 Cheng D Y, Zhao S J, Wang S Q, et al. First-principles study of the elastic properties and electronic structure of NiTi, CoTi and FeTi. Philos Mag A, 2001, 81: 1625-1632
[38]  27 Zhang H, Wang S Q. The structure stabilities of the intermetallics and solid-state phase transformation induced by lattice vibration effects in the Al-Zr system by first-principles calculation. J Mater Res, 2010, 25: 1689-1694
[39]  29 Wallace D C. Thermodynamics of Crystal. New York: Wiley, 1972
[40]  30 Wendel H, Martin R M. Theory of structural properties of covalent semiconductors. Phys Rev B, 1979, 19: 5251-5264
[41]  31 Sham L J. Electronic contribution to lattice dynamics in insulating crystals. Phys Rev, 1969, 188: 1431-1439
[42]  35 Wang S Q. First-principles study of the anistropic thermal expansion of wurtzite ZnS. Appl Phys Lett, 2006, 88: 061902
[43]  38 Pozzo M, Desjarlais M P, Alfe D. Electrical and thermal conductivity of liquid sodium from first-principles calculation. Phys Rev B, 2011, 84: 054203
[44]  39 Maksimov E G, Wang S Q, Magnitskaya M V, et al. Effect of high pressure on the electron-phonon interaction and superconductivity in ZrN and HfN. JETP Lett, 2008, 87: 437-440
[45]  41 Ma S Y, Wang S Q. Ab initio study of self-diffusion in silicon over a wide temperature range: Point defect states and migration mechanism. Phys Rev B, 2010, 81: 193203
[46]  45 Wang S Q. A comparative first-principles study of orbital hybridization in two-dimensional C, Si, and Ge. Phys Chem Chem Phys, 2011, 13: 11929-11938

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133