1 Materials Genome Initiative for Global Competitiveness. USA National Science and Technology Council, June 2011
[2]
2 Jain A, Hautier G, Moore C J, et al. A high-throughput infrastructure for density functional theory calculation. Comp Mater Sci, 2011, 50: 2295-2310
[3]
4 Gonze X, Amadon B, Anglade P M, et al. ABINIT: First-principles approach to material and nanosystem properties. Comput Phys Commun, 2009, 180: 2582-2615
[4]
7 Gonze X. First-principles responses of solid to atomic displacements and homogeneous electric fields: Implementation of a conjugate- gradient algorithm. Phys Rev B, 1997, 55: 10337-10354
[5]
16 Hedin L. New method for calculating the one-particle Green's function with approximation to the electron-gas problem. Phys Rev, 1965, 139: A796-A823
[6]
17 Loschen C, Carrasco J, Neyman K M, et al. First-principles LDA+U and GGA+U study of cerium oxides: Dependence on the effective U parameter. Phys Rev B, 2007, 75: 035115
[7]
20 Wang S Q, Ye H Q. Ab initio investigation of the pressure dependences of phonon and dielectric properties for III-V semiconductors. J Phys Condens Matter, 2005, 17: 4475-4488
[8]
22 Wang S Q. Effect of charge redistribution on the thermal-expansion behaviours in III-V semiconductors. J Phys Soc Jpn, 2009, 78: 024603
[9]
24 Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett, 1985, 55: 2471-2474
[10]
25 Alfe D. First-principles simulation of direct coexistence of solid and liquid aluminium. Phys Rev B, 2003, 68: 064423
[11]
26 Wang S Q. First-principles studies on the impact of proton disorder on physical properties of ice. Int J Quantum Chem, 2013, 113: 661-666
[12]
28 Wang S Q, Ye H Q, Yip S. First-principles studies on the pressure dependences of the stress-strain relationship and elastic stability of semiconductors. J Phys Conden Matter, 2006, 18: 395-409
[13]
32 Pavone P, Karch K, Schutt O, et al. Ab initio lattice dynamics of diamond. Phys Rev B, 1993, 48: 3156-3163
[14]
33 Wang S Q. Effect of charge redistribution on the thermal-expansion behaviours in III-V semiconductors. J Phys Soc Jpn, 2009, 78: 024603
[15]
34 Wang S Q. Studies on thermodynamic properties of III-V compounds by first-principles response-function calculation. Phys Status Solidi B-Basic Solid State Phys, 2009, 246: 1618-1627
[16]
36 Greenwood D A. The Boltzmann equation in the theory of electrical conduction in metals. Proc Phys Soc London, 1958, 71: 585-596
[17]
37 Silvestrelli P L, Alavi A, Parrinello M. Electrical-conductivity in ab initio simulations of metals: Application to liquid sodium. Phys Rev B, 1997, 55: 15515-15522
[18]
40 Maksimov E G, Wang S Q, Magnitskaya M V, et al. Effect of high pressure on the phonon spectra and superconductivity in ZrN and HfN. Supercond Sci Technol, 2009, 22: 075004
[19]
42 Ma S Y, Wang S Q. Ab initio calculation of intrinsic diffusion coefficients for boron in silicon at finite temperatures. Eur Phys J B, 2009, 72: 567-573
[20]
43 Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon film. Science, 2004, 306: 666-669
[21]
44 Wang S Q. Studies of physical and chemical properties of two-dimensional hexagonal crystals by first-principles calculation. J Phys Soc Jpn, 2010, 79: 064602
[22]
46 Ceder G. Opportunities and challenges for first-principles materials design and applications to Li battery materials. MRS Bull, 2010, 35: 693-701
[23]
3 Martin R M. Electronic Structure. Cambridge: Cambridge University Press, 2004
[24]
5 Gonze X, Rignanese G M, Verstraete M, et al. A brief introduction to the ABINIT software package. Zeit Kristallogr, 2005, 220: 558-562
[25]
6 Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140: A1133-A1138
[26]
8 Wang S Q, Ye H Q. Plane-wave pseudopotential study on mechanical and electronic properties for IV and III-V crystalline phases with zinc-blende structure. Phys Rev B, 2002, 66: 235111
[27]
9 Wang S Q, Ye H Q. A plane-wave pseudopotential study on III-V zinc-blende and wurtzite semiconductors under pressure. J Phys Condens Matter, 2002, 14: 9579-9587
[28]
10 Wang S Q, Ye H Q. First-principles study on the lonsdaleite phases of C, Si and Ge. J Phys Condes Matter, 2003, 15: L197-L202
[29]
11 Wang S Q, Ye H Q. First-principles study on elastic properties and phase stability of III-V compounds. Phys Status Solidi B Basic Res, 2003, 240: 45-54
[30]
12 Wang S Q, Ye H Q. Ab initio elastic constants for the lonsdaleite phases of C, Si and Ge. J Phys Condes Matter, 2003, 15: 5307-5314
[31]
13 Perdew J P, Levy M. Physical content of the exact Kohn-Sham orbital energies: Band gaps and derivative discontinuities. Phys Rev Lett, 1983, 51: 1884-1887
[32]
14 Becke A D. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648-5652
[33]
15 Xiao H, Tahir-Kheli J, Goddard W A. Accurate band gaps for semiconductors from density functional theory. J Phys Chem Lett, 2011, 2: 212-217
[34]
18 Baroni S, Giannozzi P, Testa A. Green's-function approach to linear response in solids. Phys Rev Lett, 1987, 58: 1861-1864
[35]
19 Gonze X. Perturbation expansion of variational principles at arbitrary order. Phys Rev A, 1995, 52: 1086-1095
[36]
21 Wang S Q. A comparative first-principles study of ZnS and ZnO in zinc blende structure. J Cryst Growth, 2006, 287: 185-188
[37]
23 Cheng D Y, Zhao S J, Wang S Q, et al. First-principles study of the elastic properties and electronic structure of NiTi, CoTi and FeTi. Philos Mag A, 2001, 81: 1625-1632
[38]
27 Zhang H, Wang S Q. The structure stabilities of the intermetallics and solid-state phase transformation induced by lattice vibration effects in the Al-Zr system by first-principles calculation. J Mater Res, 2010, 25: 1689-1694
[39]
29 Wallace D C. Thermodynamics of Crystal. New York: Wiley, 1972
[40]
30 Wendel H, Martin R M. Theory of structural properties of covalent semiconductors. Phys Rev B, 1979, 19: 5251-5264
[41]
31 Sham L J. Electronic contribution to lattice dynamics in insulating crystals. Phys Rev, 1969, 188: 1431-1439
[42]
35 Wang S Q. First-principles study of the anistropic thermal expansion of wurtzite ZnS. Appl Phys Lett, 2006, 88: 061902
[43]
38 Pozzo M, Desjarlais M P, Alfe D. Electrical and thermal conductivity of liquid sodium from first-principles calculation. Phys Rev B, 2011, 84: 054203
[44]
39 Maksimov E G, Wang S Q, Magnitskaya M V, et al. Effect of high pressure on the electron-phonon interaction and superconductivity in ZrN and HfN. JETP Lett, 2008, 87: 437-440
[45]
41 Ma S Y, Wang S Q. Ab initio study of self-diffusion in silicon over a wide temperature range: Point defect states and migration mechanism. Phys Rev B, 2010, 81: 193203
[46]
45 Wang S Q. A comparative first-principles study of orbital hybridization in two-dimensional C, Si, and Ge. Phys Chem Chem Phys, 2011, 13: 11929-11938