全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

共和盆地更尕海湖泊现代水环境与碳酸盐碳氧同位素组成变化

DOI: 10.1360/N972014-00749, PP. 847-856

Keywords: 碳酸盐,稳定同位素,轮藻结壳,软体动物壳体,水体环境

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过分析更尕海轮藻碳酸盐结壳、软体动物壳体等碳氧同位素的季节变化,δ结合湖水溶解无机碳(DIC)碳同位素(δ13CDIC)和湖水氧同位素(δ18OLake),δ探讨其与现代湖泊水体环境的关系.结果表明,δ5~8月,δ轮藻植物生长速率约为5~6cm/月;期间,δ沉水植物强烈的光合作用和碳酸盐的析出导致湖水pH升高,δ同时湖水DIC和Ca2+含量显著下降.结合流域水体氧同位素、气温和降水量等观测资料,δ指出更尕海湖泊水位季节变化是区域降水量与蒸发作用平衡的结果;湖水氧同位素组成主要受入湖水氧同位素组成、湖泊内蒸发过程和降水量等的影响.软体动物壳体氧、碳同位素组成可分别代表δ18OLake与δ13CDIC的年际变化.然而,δ轮藻结壳氧同位素与δ18OLake之间非平衡分馏效应显著,δ有待于进一步开展工作.

References

[1]  34 Hammarlund D, Aravena R, Barnekow L, et al. Multi-component carbon isotope evidence of early Holocene environmental change and carbon-flow pathways from a hard-water lake in northern Sweden. J Paleolimn, 1997, 18: 219-233
[2]  35 Sun Q, Xie M M, Shi L M, et al. Alkanes, compound-specific carbon isotope measures and climate variation during the last millennium from varved sedments of Lake Xiaolongwan, northeast China. J Paleolimn, 2013, 50: 331-344
[3]  36 McConnaughey T A, Gillikin D P. Carbon isotopes in mollusk shell carbonates. In: Gr?cke D R, Gillikin D P, eds. Advances in Mollusc Sclerochronology and Sclerochemistry: Tools for Understanding Climate and Environment. Geo-Mar Lett, 2008, 28: 287-299
[4]  37 Emrich K, Ehhalt D H, Vogel J C. Carbon isotope fractionation during the precipitation of calcium carbonate. Earth Planet Sci Lett, 1970, 8: 363-371
[5]  2 Zhang J W, Chen F H, Holmes J A, et al. Holocene monsoon climate documented by oxygen and carbon isotopes from lake sediments and peat bogs in China: A review and synthesis. Quat Sci Rev, 2011, 30: 1973–1987
[6]  8 Wood R D, Imahori K A. A Revision of the Characeae. Weinheim: J Cramer, 1965
[7]  9 Krause W. Bd. 18: Charales (Charophyceae). Jena: Fischer, 1997
[8]  10 Martin G, Torn K, Blindow I, et al. Introduction to charophytes. In: Schubert H, Blindow I, eds. Charophytes of the Baltic Sea. The Baltic Marine Biologists Publications, 2003, No. 19. Ruggell: Alfried Krupp von Bohlen und Halbach-Stiftung, 2013. 3-14
[9]  11 Croft W N. A new Trochiliscus (Charophyta) from the Downtonian of Podolia. Bull Br Mus (Nat Hist) Dep Geol, 1952, 1: 189-220
[10]  12 Soulié M I. Charophytes as lacustrine biomarkers during the Quaternary in North Africa. J Afr Earth Sci, 1991, 12: 341-351
[11]  13 Martín C C, Wójcicki J J, Fonollà L. Fossil charophytes and hydrophytic angiosperms as indicators of lacustrine trophic change. A case study in the Miocene of Catalonia (Spain). Cryptoam Algol, 2006, 27: 357-379
[12]  14 MacDonald G M, Edwards T W D, Moser K A, et al. Rapid response of treeline vegetation and lakes to past climate warming. Nature, 1993, 361: 243-246
[13]  15 Apolinarska K. Reconstructions of the early and middle Holocene climate and environment based on δ18O and δ13C records in biogenic carbonates. Lake Niepruszewskie, western Poland. Acta Geol Pol, 2009, 59: 359-370
[14]  16 Clegg B F, Hu F S. An oxygen-isotope record of Holocene climate change in the south-central Brooks Range, Alaska. Quat Sci Rev, 2010, 29: 928-939
[15]  17 Pe?echaty M, Apolinarska K, Pukacz A, et al. Stable isotope composition of Chara rudis incrustation in Lake Jasne, Poland. Hydrobiologia, 2010, 656: 29-42
[16]  18 Anadón P, Utrilla R, Vázquez A. Mineralogy and Sr-Mg geochemistry of charophyte carbonates: A new tool for paleolimnological research. Earth Planet Sci Lett, 2002, 197: 205-214
[17]  19 Coletta P, Pentecost A, Spiro B. Stable isotopes in charophyte incrustations: Relationships with climate and water chemistry. Paleogeogr Paleoclimatol Paleoecol, 2001, 173: 9-19
[18]  20 Andrews J E, Coletta P, Pentecost A, et al. Equilibrium and disequilibrium stable isotope effects in modern charophyte calcites: Implications for palaeoenvironmental studies. Paleogeogr Paleoclimatol Paleoecol, 2004, 204: 101-114
[19]  21 Pentecost A, Andrews J E, Dennis P F, et al. Charophyte growth in small temperate water bodies: Extreme isotopic disequilibrium and implications for the palaeoecology of shallow marl lakes. Paleogeogr Paleoclimatol Paleoecol, 2006, 240: 389-404
[20]  22 Qiang M R, Song L, Chen F H, et al. A 16-ka lake-level record inferred from macrofossils in a sediment core from Genggahai Lake, northeastern Qinghai-Tibetan Plateau (China). J Paleolimn, 2013, 49: 575-590
[21]  23 Yang X P, Ma N N, Dong J F, et al. Recharge to the inter-dune lakes and Holocene climatic changes in the Badain Jaran Desert, western China. Quat Res, 2010, 73: 10-19
[22]  24 Andrews M, Davison I R, Andrews M E, et al. Growth of Chara hispida. I. Apical growth and basal decay. J Ecol, 1984, 72: 873–884
[23]  25 McConnaughey T A. Calcification in Chara coralina: CO2 hydroxylation generates protons for bicarbonate assimilation. Limnol Oceanogr, 1991, 36: 619-628
[24]  26 Li Q H, Lin Q Q, Han B P. Conductivity distribution of water supply reservoirs in Guangdong province (in Chinese). Acta Ecol Environ Sin, 2005, 14: 16-20 [李秋华, 林秋奇, 韩博平. 广东大中型水库电导率分布特征及其受N、P营养盐的影响. 生态环境, 2005, 14: 16-
[25]  27 Liu J K. Study on the Donghu Lake ecology (II) (in Chinese). Beijing: Science Press, 1995. 63–226 [刘建康. 东湖生态学研究(二). 北京: 科学出版社, 1995. 63-
[26]  28 Van den Berg M S, Coops H, Simons J, et al. A comparative study of the use of inorganic carbon resources by Chara aspera and Potamogeton pectinatus. Aquat Bot, 2002, 72: 219–233
[27]  29 Craig H. Isotopic variation in meteoric waters. Science, 1961, 133: 1702-1703
[28]  30 Edwards T W D, Wolfe B B, MacDonald G. Influence of changing atmospheric circulation on precipitation d18O-temperature relations in Canada during the Holocene. Quat Res, 1996, 46: 211-218
[29]  31 Craig H. The geochemistry of the stable carbon isotopes. Geochim Cosmochim Acta, 1953, 3: 53-92
[30]  32 Stuiver M. Oxygen and carbon isotope ratios of fresh-water carbonates as climatic indicators. J Geol Res, 1970, 75: 5247-5257
[31]  33 Li H C, Ku T L. δ13C-δ18O covariance as a paleohydrological indicator for closed-basin lakes. Paleogeogr Paleoclimatol Paleoecol, 1997, 133: 69–80
[32]  1 Leng M J, Marshall J D. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quat Sci Rev, 2004, 23: 811-831
[33]  3 Anadón P, Utrilla R, Vázquez A. Use of charophyte carbonates as a proxy indicators of subtle hydrological and chemical changes in Marl lakes: Example from the Miocene Bicorb Basin, eastern Spain. Sed Geol, 2000, 133: 325-347
[34]  4 Becker D, Picot L, Berger J P. Stable isotopes (δ13C and δ18O) of charophyte gyrogonites: Example from the Brochene Fluh section (Late Oligocene-Early Miocene, Switzerland). Geobios, 2002, 35: 89-97
[35]  5 Apolinarska K, Hammarlund D. Multi-component stable isotope records from Late Weichselian and early Holocene lake sediments at Imio?ki, Poland: Palaeoclimatic and methodological implications. J Quat Sci, 2009, 24: 948-959
[36]  6 Hutchinson G E. A Treatise on Limnology. 3: Limnological Botany. New York: John Willey and Sons, 1975
[37]  7 Urbaniak J. Estimation of carbonate and element content in charophytes-methods of determination. Pol J Env Stud, 2010, 19: 413-417
[38]  38 Apolinarska K. δ18O and δ13C isotope investigation of the Late Glacial and early Holocene biogenic carbonates from the Lake Lednice sediments, western Ploand. Acta Geol Pol, 2009, 59: 111-121

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133