Matsuura M, Aoki H, Tsukamoto H, et al. Application of zinc injection to reduce radiation sources at takahama unit 4 [A]. Int.Congress on Advances in Nuclear Power Plants[C]. Shinjuku Tokyo:Curran Associates Inc, 2009: 309.
Cubicciotti D. Potential-pH diagrams for alloy-water systems under LWR conditions [J]. J. Nucl. Mater., 1993, 201:176.
[4]
Beverskog B, Puigdomenech I. Revised pourbaix diagrams for zinc at 25℃~300℃[J]. Corros. Sci., 1997, 39(1): 107.
[5]
Benezeth P, Palmer D A,Wesolowski D J, et al. New measurements of the solubility of zinc oxide from 150 to 350℃[J]. J. Solut. Chem., 2002, 31(12): 947.
[6]
Riess R, Ford F P, Lundgren K. LCC-2 annual report [R].ANTI 06AR,Skultuna: ANTI, 2006.
[7]
Beverskog B. The role of zinc in LWRs [A]. Int. Conf. on Water Chemistry of Nuclear Reactor Systems[C]. San Francisco: IFE,2004: 26.
[8]
Marble W J. New developments in BWR radiation buildup [A].EPRI Seminar on BWR Radiation Buildup[C]. Palo Alto: EPRI, 1983:1.
[9]
Niedrach L W, Stoddard W H. Effect of zinc on corrosion films that form on stainless-steel [J]. Corrosion, 1986, 42(9):546.
[10]
Lister D H. Corrosion release-the primary process in activity transport [A]. Proceedings JAIF Int. Conf. on Water Chemistry in Nuclear Power Plants[C]. Tokyo: JAIF, 1988: 341.
[11]
Marble W J, Wood C J. Control of BWR radiation buildup with soluble zinc [A].Corrosion/85 Conference[C]. Boston: NACE,1986, a: 107.
[12]
Marble W J, Wood C J, Leighty C E, et al. BWR Radiation Buildup Control with Ionic Zinc [A]. Proceedings of the 1986 Joint ASME/ANS Nuclear Power Conference[C]. Philadelphia: ANS, 1986, b:144.
[13]
Haginuma M, Ono S, Kumagai M, et al. Cobalt deposition control by zinc and hydrogen injection in BWR Environment [A].Proceedings of the International Conference on Chemistry in Water Reactor[C]. Nice: SFEN, 1994: 109.
[14]
Ishigure K, Kimura T, Kadoi E. Effect of pre-conditioning with zinc on the surface oxide layer and anodic polarization behavior of stainless steel [A]. Symp. on Water Chemistry and Corrosion on Nuclear Power Plant in Asia [C]. Gyeongju: KAERI, 2005:34.
[15]
Friedman D. Electrochemical studies of zinc injection to reduce corrossin of PWR primary systems [D]. Boston: Dept. of Nuclear Engineering,Massachusetts Institute of Technology, 1997.
[16]
Lister D H, Godin M S. The Effect of Dissolved Zinc on the Transport of Corrosion Products in PWRs [R]. NP-6975-D,Palo Alto:EPRI, 1990. 72.
[17]
Kawamura H, Takamatsu H, Matsunaga T, et al. The effect of zinc addition to simulated PWR primary water on the PWSCC resistance, crack growth rate and surface oxide films characteristics of prefilmed alloy 600 [J]. Corrosion, 1998, 54(14):21.
[18]
Esposito J N, Economy G, Byers W A, et al. The addition of zinc to primary reactor coolant for enhanced PWSCC resistance [A].Proceedings of the 5 th International Symposium on Environmental degradation of Materials in Nuclear Power Systems-Water Reactors[C]. Monterey: ANS, 1991: 495.
[19]
Byers W, Jacko R J. The Influence of zinc additions and PWR primary water chemistry on surface films that form on nickel base alloys and stainless steels [A]. Proceedings of the 6th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. San Diego: TMS, 1993:837.
[20]
Inagaki H, Nishikawa A, Sugita Y, et al. Synergy effect of simultaneous zinc and nickel addition on cobalt deposition onto stainless steel in oxygenated high temperature water [J]. J. Nucl.Sci. Technol., 2003, 40(3): 143.
Ziemniak S E, Hanson M. Zinc treatment effects on corrosion behavior of 304 stainless steel in high temperature, hydrogenated water [J]. Corros. Sci., 2006, 48(9): 2525.
[23]
Ziemniak S E, Hanson M. Zinc treatment effects on corrosion behavior of alloy 600 in high temperature, hydrogenated water [J]. Corros. Sci., 2006, 48(10): 3330.
Kawamura H, Hirano H, Shirai S, et al. Inhibitory effect of zinc addition to high-temperature hydrogenated water on mill-annealed and prefilmed alloy 600[J]. Corrosion, 2000, 56(6):623.
[26]
Korb J, Stellwag B. Thermodynamics of zinc chemistry in PWRs: effects and alternatives to zinc[J]. J. Br. Nucl. Energy.Soc., 1997, 36(5): 377.
[27]
Miyajima K, Hirano H. Thermodynamics consideration on the effect of zinc injection into PWR primary coolant for the reduction of radiation buildup and corrosion control[A]. Corrosion[C].Houston: NACE International, 2001: 13.
[28]
Lin C C, Smith F R, Cowan R L. Effects of hydrogen water chemistry on radiation field buildup in BWRs [J]. Nucl. Eng. Des.,1996, 166(1): 31.
[29]
Betova I, Bojinov M, Kinnunen P, et al. Mixed-conduction model for stainless steel in a high-temperature electrolyte: estimation of kinetic parameters of inner layer constituents [J]. J.Electrochem. Soc., 2008, 155(2): C81.
[30]
Robertson J. The mechanism of high-temperature aqueous corrosion of steel [J]. Corros. Sci., 1989, 29(11-12): 1275.
[31]
Winkler C, Htittner F, Michel F. Reduction of the corrosion rate in the primary circuit of pressurized water reactors for limiting radioactive deposits [J]. VGB Kraftwerkstechnik, 1989,69(5): 527.
[32]
Osato T, Hemmi Y. Corrosion of Structure Materials under Zinc and/or Nickel Injection of BWR[M]. Private Communication.Toshiba Corp, 1996.
[33]
Walker Z H, Allsop H A, Godin M S L, et al. Effect of zinc addition under CANDU pressurized heavy water reactor conditions [A]. Water Chemistry of Nuclear Reactor System7, BNES[C]. London: Thomas Telford Publishing, 1996. 186.
[34]
Romeo G. Oxidation and radiation buildup on stainless steel components of boiling water reactors [J]. Nucl. Technol.,1983, 63(1): 110.
[35]
Honda T, Izumiya M, Minato A, et al. Radioactive contamination of carbon steel in a boiling water reactor [J]. Nucl.Technol., 1984, 64(1): 35.
[36]
Lister D H. The transport of a radioactive corrosion products in high-temperature water-II. The activation of isothermal steel surfaces [J]. Nucl. Sci. Eng., 1976, 59(4): 406.
[37]
Marble W J. BWR Radiation-Field Control Using Zinc Injection Passivation[R]. NP-4474, San Jose: EPRI, 1986. 47.
[38]
Marble W J, Cowan R L. Mitigation of radiation buildup in the BWR by feedwater zinc addition [A]. Proceedings JAIF Int. Conf. on Water Chemistry in Nuclear Power Plants[C]. Fukui: JAIF, 1991:55.
[39]
Garcia S E, Cowan R L. Zinc addition experience in BWRs under normal and hydrogen addition chemistry [A]. Proceedings JAIF Int. Conf. on Water Chemistry in Nuclear Power Plants[C].Kashiwazaki: JAIF, 1998: 225.
[40]
Perkins D, Ahluwalia K, Deshon J, et al. An EPRI perspective and overview of PWR zinc injection [A]. Proceedings of Int. Conf. on Water Chemistry of Nuclear Reactor Systems[C]. Berlin: VGB, 2008: 26.
[41]
Angeliu T M, Andresen P L. Effect of zinc additions on oxide rupture strain and repassivation kinetics of iron-based alloys in 288℃ water [J]. Corrosion, 1996, 52(1): 28.
[42]
Andresen P L, Wilson J A, Ahluwalia K S. Use of primary water chemistry in PWRs to mitigate PWSCC of Ni-base alloys [A].Int. Conf. on Water Chemistry of Nuclear Reactor Systems[C]. Jeju Island: IAEA, 2006: 8.
[43]
Morra M M, Andresen P L, Pollick M. The effect of Zn and Low energy grain boundaries on SCC of stainless steels [A]. ICG-EAC Meeting[C]. Awaji Island: IFE, 2004: 39.
[44]
Norring K, Engstrom J. Initiation of SCC in nickel base alloys in primary PWR environment: studies at studsvik since Mid 1980s [J]. Energy Mater., 2008, 3(2): 113.
[45]
Maeng W Y, Cho Y S, Kim U C. Effect of Zn injection on the SCC crack growth of alloy 600 in water at 360℃ [A]. Int. Conf. on Water Chemistry of Nuclear Reactor Systems[C]. Jeju Island: IAEA,2006: 5.
[46]
Betova I, Bojinov M, Kinnunen P, et al. Influence of Zn on the oxide layer on AISI 316L(NG) stainless steel in simulated pressurised water reactor coolant [J]. Electrochim. Acta, 2009,54(3): 1056.
[47]
Betova I, Bojinov M, Kinnune P, et al. Incorporation of Zn into oxide films on stainless steel in simulated PWR conditions [A]. Int. Conf. on Water Chemistry in Nuclear Power Plants[C]. Berlin:VGB, 2008: 15.
[48]
Angeliu T M, Andresen P L, Pollick M L. Repassivation and crack propagation of alloy 600 in 288℃ water[J]. Corrosion, 1997, 53(2): 114.