Takabe H, Ueda M. The Formation Behavior of Corrosion Protective Films of Low Cr Bearing Steels in CO2 Environments[C]. Corrosion/01, Houston: NACE, 2000.
[7]
Chen C F, Lu M X, Chang W, et al. The Ion Passing Selectivity of CO2 Corrosion Scale on N80 Tube Steel[C].Corrosion/03, Houston: NACE, 2003.
[8]
王献昉.铬钢在模拟油田CO2腐蚀中的点蚀行为[J]. 材料保护, 2003, 36(7):28.
[9]
Chen C F, Lu M X, Sun D B, et al. The effect of Cr on the pitting resistance of oil tube steel in CO2 corrosion system[J]. Corrosion, 2005, 6: 594.
Munoz A, Genesca J, Duran R, et al. Mechanism of FeCO3 Formation on API X70 Pipeline Steel in Brine Solutions Containing CO2 [C]. Corrosion/05, Houston: NACE, 2005.
[12]
Ueda M, Ikeda A. Effect of Microstructure and Cr Content in Steel on CO2 Corrosion [C]. Corrosion/96, Houston: NACE,1996.
[13]
Kermani M B, Gonzales J C, Linne C, et al. Development of Low Carbon Cr-Mo Steels with Exceptional Corrosion Resistance for Oilfield Applications [C]. Corrosion/01, Houston: NACE, 2001.
[14]
Nice P I, Ueda M. The Effect of Microstructure and Chromium Alloying Content to the Corrosion Resistance of Low-alloy Steel Well Tubing in Seawater Service[C]. Corrosion/98, Houston:NACE, 1998.
[15]
Takabe H, Ueda M. Corrosion Resistance of Low Cr Bearing Steel in Sweet and Sour Environments [C]. Corrosion/02, Houston:NACE, 2002.
Nice P I, Takabe H, Ueda M. The Development and Implementation of a New Alloyed Steel for Oil and Gas Production Wells[C]. Corrosion/00, Houston: NACE, 2000.