Tomosawa F. Japan's experiences and standards on the durability problems of reinforced concrete structures[J]. Int.J. Struct. Eng., 2009, 1(1): 1.
[3]
Song H W, Ann K Y, Pack S W, et al. Factors influencing chloride transport and chloride threshold level for the prediction of service life of concrete structures[J]. Int. J. Struct. Eng.,2010, 1(2): 131.
[4]
Song G L. Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete[J]. Cem. Concr. Res., 2000,30(11): 1723.
Andrade C, Keddam M, Novoa X R, et al. Electrochemical behavior of steel rebars in concrete: influence of environmental factors and cement chemistry[J]. Electrochim. Acta, 2001, 46(24-25):3905.
[9]
Qiao G F, Ou J P. Corrosion monitoring of reinforcing steel in cement mortar by EIS and ENA[J]. Electrochim. Acta, 2007, 52(28):8008.
[10]
Mohamed I, Masayasu O. Corrosion rate of ordinary and high-performance concrete subjected to chloride attack by AC impedance spectroscopy[J]. Constr. Building Mater., 2006, 20(7):458.
[11]
Suryavanshi A K, Scantlebury J D, Lyod S B. Corrosion of reinforcement steel embedded in high water-cement ratio concrete contaminated with chloride[J]. Cem. Concr. Compos., 1998, 20(4):263.
[12]
Koleva D A, Hu J, Fraaij A L A, et al. Quantitative characterization of steel/cement paste interface microstructure and corrosion phenomena in mortars suffering from chloride attack[J].Corros. Sci., 2006, 48(12): 4001.
Law D W, Cairns J, Millard S G, et al. Measurement of loss of steel from reinforcing bars in concrete using linear polarisation resistance measurements[J]. NDT$\&$E Int., 2004, 37(5): 381.