刘婷, 欧阳红林, 黄守道, 等. 基于重复单元消弱永磁电机齿槽转矩方法[J]. 电工技术学报, 2011, 26(12): 43-48. Liu Ting, Ouyang Honglin, Huang Shoudao, et al. Reducing cogging torque in permanent magnet wind power generators based on repeat unit[J]. Transactions of China Electrotechnical Society, 2011, 26(12): 43-48.
[2]
周俊杰, 范承志, 叶云岳, 等. 基于斜磁极的盘式永磁电机齿槽转矩消弱方法[J]. 浙江大学学报, 2010, 44(8): 1549-1550. Zhou Junjie, Fan Chengzhi, Ye Yunyue, et al. Method for reducing cogging torque based on magnet skewing in disc-type permanent magnet motors[J]. Journal of Zhejiang University, 2010, 44(8): 1549-1550.
[3]
张志红, 何桢, 郭伟. 在响应曲面方法中的三类中心复合设计的比较研究[J]. 沈阳航空工业学院学报, 2007, 24(1): 87-91. Zhang Zhihong, He Zhen, Guo Wei. A comparative study of three central composite designs in response surface methodology[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2007, 24(1): 87-91.
[4]
石松宁, 王大志, 时统宇. 基于RSM的永磁驱动器偏心磁极的多目标优化[J]. 仪器仪表学报, 2014, 35(9): 1966-1967. Shi Songning, Wang Dazhi, Shi Tongyu. Multi- objective optimization of eccentric magnet pole for permanent magnet drive based on response surface methodology[J]. Chinese Journal of Scientific Instru- ment, 2014, 35(9): 1966-1967.
[5]
Vafaeesefat A. Optimization of composite pressure vessels with metal liner by adaptive response surface method[J]. Journal of Mechanical Science and Technology, 2011, 25(11): 2811-2816.
[6]
Liu W, Liu L, Chung I, et al. Real-time particle swarm optimization based parameter identification applied to permanent magnet synchronous machine[J]. Applied Soft Computing, 2011, 11(2): 2556-2564.
[7]
Modares H, Alfi A, Fateh M. Parameter identification of chaotic dynamic systems through an improved particle swarm optimization[J]. Expert Systems with Applications, 2010, 37(5): 3714-3720.
[8]
Wallace A, Von Jouanne A, Jeffryes R. Comparison testing of an adjustable-speed permanent-magnet eddy- current coupling[C]. IEEE Proceedings of Pulp and Paper Industry Technical Conference, Atlanta, 2000: 73-78.
[9]
Wallace A, Von Jouanne A. Industrial speed control: are PM couplings an alternative to VFDs?[J]. IEEE Industry Applications Magazine, 2001, 7(5): 57-63.
[10]
Wallace A, Von Jouanne A, Williamson S, et al. Perfor- mance prediction and test of adjustable, permanent- magnet, load transmission systems[C]. Proceedings of IEEE Industry Applications Society 36th Annual Meeting, 2001: 1648-1655.
[11]
Salon S J, Yukenmez Ergene L, Wendling P F. 3D transient magnetic modeling of braking torque in a rotating conducting disc[C]. Proceedings of International Electric Machines and Drives Conference-IEMDC, Cambridge, 2001: 188-191.
[12]
Abbaszadeh K, Rezaee Alam F, Saied S A. Cogging torque optimization in surface-mounted permanent magnet motors by using design of experiment[J]. Energy Conversion and Management, 2011, 52(10): 3075-3082.
[13]
杨玉波, 王秀和, 朱常青. 基于分块永磁磁极的永磁电机齿槽转矩消弱方法[J]. 电工技术学报, 2012, 27(3): 74-76. Yang Yubo, Wang Xiuhe, Zhu Changqing. Effect of permanent magnet segmentation on the cogging torque of surface mounted permanent magnet motors[J]. Transactions of China Electrotechnical Society, 2012, 27(3): 74-76.
[14]
Hwang K Y, Lin Hai, Rhyu S H, et al. A study on the novel coefficient modeling for a skewed permanent magnet and overhang structure for optimal design of brushless DC motor[J]. IEEE Transactions on Magnetics, 2012, 48(5): 1918-1923.
[15]
杨玉波, 王秀和, 丁婷婷. 基于单一磁极宽度变化的内置式永磁同步电动机齿槽转矩消弱方法[J]. 电工技术学报, 2009, 24(7): 42-44. Yang Yubo, Wang Xiuhe, Ding Tingting. Different pole-arc width combination for reducing cogging torque of interior-magnet PMSM[J]. Transactions of China Electrotechnical Society, 2009, 24(7): 42-44.