全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于核函数极限学习机的微电网短期负荷预测方法

, PP. 218-224

Keywords: 微电网,短期负荷预测,极限学习机,周期更新

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对以单个或集体用户为业主的用户侧小容量微电网,考虑到成本约束及用电特征的不确定性,提出了一种基于核函数极限学习机的微电网短期负荷预测方法。使用核函数极限学习机、启发式遗传算法和分时训练样本,建立了包含离线参数寻优与在线负荷预测的预测模型;通过模型参数的周期更新来保证算法最优参数的时效性,同时降低在线预测系统的计算复杂度与历史数据存储量。通过对不同容量、类型的用户侧微电网进行短期负荷预测,分析了预测结果的准确度、参数周期更新的效果、预测结果对经济运行的影响和预测方法的计算效率。

References

[1]  鲁宗相, 王彩霞, 闵勇, 等. 微电网研究综述[J]. 电力系统自动化, 2007, 31(19): 100-107. Lu Zongxiang, Wang Caixia, Min Yong, et al. Overview on microgrid research[J]. Automation of Electric Power Systems, 2007, 31(19): 100-107.
[2]  陈益哲, 张步涵, 王江虹, 等. 基于短期负荷预测的微网储能系统主动控制策略[J]. 电网技术, 2011, 35(8): 35-40. Chen Yizhe, Zhang Buhan, Wang Jianghong, et al. Active control strategy for microgrid energy storage system based on short-term load forecasting[J]. Power Systems Technology, 2011, 35(8): 35-40.
[3]  周念成, 邓浩, 王强钢, 等. 光伏与微型燃气轮机混合微网能量管理研究[J]. 电工技术学报, 2012, 27(1): 74-84. Zhou Niancheng, Deng Hao, Wang Qianggang, et al. Energy management strategy of PV and micro-turbine hybrid micro-grid[J]. Transactions of China Electrotech- nical Society, 2012, 27(1): 74-84.
[4]  刘小平, 丁明, 张颖媛, 等. 微网系统的动态经济调度[J]. 中国电机工程学报, 2011, 31(31): 77-84. Liu Xiaoping, Ding Ming, Zhang Yingyuan, et al. Dynamic economic dispatch for microgrids[J]. Procee- dings of the Chinese Society of Electrical Engineering, 2011, 31(31): 77-84.
[5]  Amjady N, Keynia F, Zareipour H. Short-term load forecast of microgrids by a new bilevel prediction strategy[J]. IEEE Transactions on Smart Grid, 2010, 1(3): 286-294.
[6]  王越, 卫志农, 吴佳佳. 人工神经网络预测技术在微网运行中的应用[J]. 电力系统及其自动化学报, 2012, 24(2): 83-89. Wang Yue, Wei Zhinong, Wu Jiajia. Application of ANN prediction technology in microgrid operation[J]. Procee- dings of the CSU-EPSA, 2012, 24(2): 83-89.
[7]  陈民铀, 朱博, 徐瑞林, 等. 基于混合智能技术的微电网剩余负荷超短期预测[J]. 电力自动化设备, 2012, 32(5): 13-18. Chen Minyou, Zhu Bo, Xu Ruilin, et al. Ultra-short- term forecasting of microgrid surplus load based on hybrid intelligence techniques[J]. Electric Power Automation Equipment, 2012, 32(5): 13-18.
[8]  Ghofrani M, Hassanzadeh M, Etezadi-Amoli M, et al. Smart meter based short-term load forecasting for residential customers[C]. North American Power Sym- posium(NAPS), 2011: 1-5.
[9]  De Silva D, Yu X, Alahakoon D, et al. Incremental pattern characterization learning and forecasting for electricity consumption using smart meters[C]. IEEE International Symposium on Industrial Electronics (ISIE), 2011: 807-812.
[10]  Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501.
[11]  Huang G B, Wang D H, Lan Y. Extreme learning machines: a survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2): 107-122.
[12]  Huang G B, Zhou H, Ding X, et al. Extreme learning machine for regression and multiclass classification [J]. Systems, Man, and Cybernetics, Part B: IEEE Transactions on Cybernetics, 2012, 42(2): 513-529.
[13]  程松, 闫建伟, 赵登福, 等. 短期负荷预测的集成改进极端学习机方法[J]. 西安交通大学学报, 2009, 43(2):106-110. Cheng Song, Yan Jianwei, Zhao Dengfu, et al. Short- term load forecasting method based on ensemble improved extreme learning machine[J]. Journal of Xi’an Jiaotong University, 2009, 43(2): 106-110.
[14]  毛力, 王运涛, 刘兴阳, 等. 基于改进极限学习机的短期电力负荷预测方法[J]. 电力系统保护与控制, 2012, 40(20): 140-144. Mao Li, Wang Yuntao, Liu Xingyang, et al. Short- term power load forecasting method based on improved extreme learning machine[J]. Power System Protection and Control, 2012, 40(20): 140-144.
[15]  Nizar A H, Dong Z Y, Wang Y. Power utility nontech- nical loss analysis with extreme learning machine method[J]. IEEE Transactions on Power Systems, 2008, 23(3): 946-955.
[16]  Serre D. Matrices: theory and applications[M]. Germany: Springer, 2010.
[17]  Toh K A. Deterministic neural classification[J]. Neural Computation, 2008, 20(6): 1565-1595.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133