鲁宗相, 王彩霞, 闵勇, 等. 微电网研究综述[J]. 电力系统自动化, 2007, 31(19): 100-107. Lu Zongxiang, Wang Caixia, Min Yong, et al. Overview on microgrid research[J]. Automation of Electric Power Systems, 2007, 31(19): 100-107.
[2]
陈益哲, 张步涵, 王江虹, 等. 基于短期负荷预测的微网储能系统主动控制策略[J]. 电网技术, 2011, 35(8): 35-40. Chen Yizhe, Zhang Buhan, Wang Jianghong, et al. Active control strategy for microgrid energy storage system based on short-term load forecasting[J]. Power Systems Technology, 2011, 35(8): 35-40.
[3]
周念成, 邓浩, 王强钢, 等. 光伏与微型燃气轮机混合微网能量管理研究[J]. 电工技术学报, 2012, 27(1): 74-84. Zhou Niancheng, Deng Hao, Wang Qianggang, et al. Energy management strategy of PV and micro-turbine hybrid micro-grid[J]. Transactions of China Electrotech- nical Society, 2012, 27(1): 74-84.
[4]
刘小平, 丁明, 张颖媛, 等. 微网系统的动态经济调度[J]. 中国电机工程学报, 2011, 31(31): 77-84. Liu Xiaoping, Ding Ming, Zhang Yingyuan, et al. Dynamic economic dispatch for microgrids[J]. Procee- dings of the Chinese Society of Electrical Engineering, 2011, 31(31): 77-84.
[5]
Amjady N, Keynia F, Zareipour H. Short-term load forecast of microgrids by a new bilevel prediction strategy[J]. IEEE Transactions on Smart Grid, 2010, 1(3): 286-294.
[6]
王越, 卫志农, 吴佳佳. 人工神经网络预测技术在微网运行中的应用[J]. 电力系统及其自动化学报, 2012, 24(2): 83-89. Wang Yue, Wei Zhinong, Wu Jiajia. Application of ANN prediction technology in microgrid operation[J]. Procee- dings of the CSU-EPSA, 2012, 24(2): 83-89.
[7]
陈民铀, 朱博, 徐瑞林, 等. 基于混合智能技术的微电网剩余负荷超短期预测[J]. 电力自动化设备, 2012, 32(5): 13-18. Chen Minyou, Zhu Bo, Xu Ruilin, et al. Ultra-short- term forecasting of microgrid surplus load based on hybrid intelligence techniques[J]. Electric Power Automation Equipment, 2012, 32(5): 13-18.
[8]
Ghofrani M, Hassanzadeh M, Etezadi-Amoli M, et al. Smart meter based short-term load forecasting for residential customers[C]. North American Power Sym- posium(NAPS), 2011: 1-5.
[9]
De Silva D, Yu X, Alahakoon D, et al. Incremental pattern characterization learning and forecasting for electricity consumption using smart meters[C]. IEEE International Symposium on Industrial Electronics (ISIE), 2011: 807-812.
[10]
Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501.
[11]
Huang G B, Wang D H, Lan Y. Extreme learning machines: a survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2): 107-122.
[12]
Huang G B, Zhou H, Ding X, et al. Extreme learning machine for regression and multiclass classification [J]. Systems, Man, and Cybernetics, Part B: IEEE Transactions on Cybernetics, 2012, 42(2): 513-529.
[13]
程松, 闫建伟, 赵登福, 等. 短期负荷预测的集成改进极端学习机方法[J]. 西安交通大学学报, 2009, 43(2):106-110. Cheng Song, Yan Jianwei, Zhao Dengfu, et al. Short- term load forecasting method based on ensemble improved extreme learning machine[J]. Journal of Xi’an Jiaotong University, 2009, 43(2): 106-110.
[14]
毛力, 王运涛, 刘兴阳, 等. 基于改进极限学习机的短期电力负荷预测方法[J]. 电力系统保护与控制, 2012, 40(20): 140-144. Mao Li, Wang Yuntao, Liu Xingyang, et al. Short- term power load forecasting method based on improved extreme learning machine[J]. Power System Protection and Control, 2012, 40(20): 140-144.
[15]
Nizar A H, Dong Z Y, Wang Y. Power utility nontech- nical loss analysis with extreme learning machine method[J]. IEEE Transactions on Power Systems, 2008, 23(3): 946-955.
[16]
Serre D. Matrices: theory and applications[M]. Germany: Springer, 2010.
[17]
Toh K A. Deterministic neural classification[J]. Neural Computation, 2008, 20(6): 1565-1595.