Anderson P M, Fouad A A. Power system control and stability[M]. 2nd Edition. Piscataway, NJ:IEEE,2003:4-12.
[2]
Amjady N, Banihashemi S A. Transient stability prediction of power systems by a new synchronism status index and hybrid classifier[J]. IET Generation, Transmission & Distribution, 2010, 4(4):509-518.
[3]
叶圣永, 王晓茹, 刘志刚, 等.基于受扰严重机组特征及机器学习方法的电力系统暂态稳定评估[J].中国电机工程学报,2011,31(1):46-51. Ye Shengyong, Wang Xiaoru, Liu Zhigang, et al. Power system transient stability assessment based on severely disturbed generator attributes and machine learning method[J].Proceedings of the CSEE, 2011, 31(1):46-51.
[4]
Gomez F R, Rajapakse A D, Annakkage U D, et al. Support vector machine-based algorithm for post- fault transient stability status prediction using synchronized measurements[J]. IEEE Transactions on Power Systems, 2011, 26(3):1474-1483.
[5]
顾雪平, 李扬, 吴献吉.基于局部学习机和细菌群体趋药性算法的电力系统暂态稳定评估[J].电工技术学报,2013,28(10):271-279. Gu Xueping, Li Yang,Wu Xianji. Transient stability assessment of power systems based on local learning machine and bacterial colony chemotaxis algorithm[J]. Transactions of China Electrotechnical Society, 2013, 28(10):271-279.
[6]
李扬,顾雪平. 基于改进最大相关最小冗余判据的暂态稳定评估特征选择[J].中国电机工程学报, 2013, 33(34):179-186. Li Yang, Gu Xueping. Feature selection for transient stability assessment based on improved maximal relevance and minimal redundancy criterion[J]. Proceedings of the CSEE, 2013, 33(34):179-186.
[7]
Li Y, Gu X P. Application of Online SVR in Very Short-Term Load Forecasting[J]. International Review of Electrical Engineering, 2013, 8(1): 277-282.
[8]
Liang N-Y, Huang G-B, Saratchandran P, et al. A fast and accurate online sequential learning algorithm for feedforward networks[J]. IEEE Transactions on Neural Networks, 2006, 17(6): 1411-1423.
[9]
Ditterrich T G. Machine learning research: four current direction[J]. Artificial Intelligence Magzine, 1997, 18(4): 97-136.
[10]
Bishop C M. Pattern recognition and machine learning[M]. New York:Springer, 2006.
[11]
Schapire R E. The strength of weak learnability[J]. Machine learning, 1990, 5(2): 197-227.
[12]
Kearns M, Valiant L. Cryptographic limitations on learning Boolean formulae and finite automata[J]. Journal of the ACM (JACM), 1994, 41(1): 67-95.
[13]
Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of computer and system sciences, 1997, 55(1): 119-139.
[14]
Grabner H, Bischof H. On-line boosting and vision [A]. Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. USA, IEEE Press, 2006: 260-267.
[15]
Lan Y, Soh Y C, Huang G-B. Ensemble of online sequential extreme learning machine[J]. Neurocompu- ting, 2009, 72(13): 3391-3395.
Pai M A. Energy function analysis for power system stability[M]. Boston, MA:Kluwer Academic Publisher,1989.
[18]
Yu X H, Chen G A. Efficient backpropagation learning using optimal learning rate and momentum[J]. Neural Networks, 1997, 10(3): 517-527.
[19]
Huang G-B, Saratchandran P, Sundararajan N. An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks[J].IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(6): 2284-2292.
[20]
Yingwei L, Sundararajan N, Saratchandran P. A sequential learning scheme for function approxima- tion using minimal radial basis function neural networks[J]. Neural computation, 1997, 9(2): 461- 478.
[21]
Yingwei L, Sundararajan N, Saratchandran P. Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm[J]. IEEE Transactions on Neural Networks, 1998, 9(2): 308-318.