José A. Carta, Sergio Velázquez, J.M. Matías. Use of Bayesian networks classifiers for long-term mean wind turbine energy output estimation at a potential wind energy conversion site[J]. Energy conversion and management, 2011, 52(2): 1137-1149.
[2]
Sergio Velázquez, José A. Carta, Matí.as J M. Com- parison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kW h produced by a wind turbine at a candidate site: A case study in the Canary Islands. Applied Energy, 2011, 88(5): 3869-3881.
[3]
José A. Carta, Sergio Velázquez. A new probabilistic method to estimate the long-term wind speed characteristics at a potential wind energy conversion site[J]. Energy. 2011, 36(5): 2671-2685.
[4]
Alejandro Romo Perea, Javier Amezcua, Oliver Probst. Validation of three new measure-correlate- predict models for the long-term prospection of the wind resource[J]. Journal of Renewable and Sustainable Energy, 2011, 3(2): 023105-1-20.
[5]
Anthony L R, John W R, James F.M. Comparison of the performance of four measure-correlate-predict algorithm[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(3): 243-264.
[6]
Saavedra-Moreno B, Salcedo-Sanz S, Carro-Calvo L. et al. Very fast training neural-computation techniques for real measure-correlate-predict wind operators in wind farms[J]. Journal of Wind Engineering and industrial Aerodynamics, 2013, 116(3): 49-60.
[7]
Mabel M C, Fernandez. Estimation of energy yield from wind farms using artificial neural networks. IEEE Transcations on Energy Conversion, 2009, 24(2): 459-464.
[8]
Sergio Velázquez, José A. Carta, Matí.as J M. Influence of the input layer signals of ANNs on wind power estimation for a target site: A case study[J]. Renewable and Sustainable Energy Reviews, 2011, 15: 1556-1566.
[9]
Zhang J, Chowdhury S, Messac A. Assessing long- term wind conditions by combining different measure- correlate-predict algorithms[C]. ASME 2013 Interna- tional Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Portland, Oregon, August 4-7, 2013: 1-9.
[10]
Schemaiah Matthias Weekes, Alison S. Tomlin. Low- cost wind resource assessment for small-scale turbine installations using site pre-screening and short term wind measurements[J]. IET Renewable Power Genera- tion, 2014, 8(4): 348-358.
[11]
Ali Dinler. A new low-correlation MCP (measurement- correlate-predict) method for wind energy forecasting [J]. Energy, 2013, 63(10): 152-160.
[12]
杨振斌, 朱瑞兆, 薛桁. 风电场风能资源评价两个新参数[J]. 太阳能学报, 2007, 28(3): 248-251. Yang Zhenbin, Zhu Ruizhao, Xue Hengl. Two new concepts on wind energy assessment in wind farm [J]. Acta Energiae Solaris Sinica, 2007, 28(3): 248-251.
[13]
GB/T 18710-2002, 风电场风能资源评估方法.
[14]
Amjady N, Daraeepour A, Keynia F. Day-ahead elec- tricity price forecasting by modified relief algrorith and hybrid neural network[J]. IET Generation, Trans- mission & Distribution, 2010, 4(3): 432-444.
[15]
Zhang Z H, Zhang J, Li Y. Adaptive particle swarm optimaization[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2009, 39(6): 1362-1381.