全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

同步发电机的非线性鲁棒电压控制

, PP. 9-16

Keywords: 电力系统,同步发电机,非线性励磁控制,电压控制,输出反馈

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种同步发电机非线性鲁棒电压控制器设计方法,解决了目前多数非线性励磁控制方法依赖于系统的特定运行点并且难以考虑电压调节精度的局限。针对发电机经变压器接入电力系统的数学模型,将其转换为以机端电压偏差、角速度偏差和有功功率偏差为状态变量的不确定线性系统,进而采用基于LMI的鲁棒控制理论设计出非线性电压控制器。与现有的非线性励磁控制器相比,所提出的电压控制器不依赖于系统的特定运行点,能适应网络参数与运行方式变化,实现机端电压调节功能。控制器对模型干扰有强鲁棒性,无须针对单机无穷大系统和多机电力系统分别设计。此外,控制器无须测量发电机转子角及任何变量的微分与积分。利用PSCAD/EMTDC对某单机无穷大系统及WSCC四机系统分别测试,仿真结果验证了控制器的良好性能。

References

[1]  Lu Q, Sun Y, Xu Z, et al. Decentralized nonlinear optimal excitation control[J]. IEEE Transactions on Power Systems, 1996, 11(4): 1957-1962.
[2]  Lan Zhou, Gan Deqiang, Ni Yixin, et al. Decentralized nonlinear robust adaptive excitation control design for power systems[J]. Proceedings of the CSEE, 2006, 26(17): 1-5.
[3]  Yu Xiangyang, Nan Haipeng, Yu Juan, et al. Adaptive integral backstepping sliding mode generator excitation control[J]. Proceedings of the CSEE, 2009, 29(10): 74-77.
[4]  Shen T, Ortega R, Lu Q, et al. Adaptive L 2- disturbance attenuation of Hamiltonian systems with parametric perturbation and application to power systems[J]. Asian Journal of Control, 2003, 5(1): 143-152.
[5]  郝晋, 王杰, 陈陈, 等. 基于Hamilton系统理论的结构保持多机电力系统非线性励磁控制[J]. 中国电机工程学报, 2005, 25(18): 6-12.
[6]  Hao Jin, Wang Jie, Chen Chen, et al. Nonlinear excitation control of multi-machine power system with structure preserving models based on Hamiltonian system theory[J]. Proceedings of the CSEE, 2005, 25(18): 6-12.
[7]  Yan R, Dong Z, Saha T, et al. A power system nonlinear adaptive decentralized controller design[J]. Automatica, 2010, 46(2): 330-336.
[8]  王锡淮, 郑天府, 肖健梅. 带电压调节的非线性鲁棒励磁控制策略研究[J]. 电力自动化设备, 2007, 27(8): 38-43.
[9]  谢小荣, 崔文进, 唐义良, 等. 一种非线性自适应最优励磁控制器的设计[J]. 电力系统自动化, 2001, 25(3): 50-55.
[10]  Ramirez J, Arroyave F, Gutierrez R. Transient stability improvement by nonlinear controllers based on tracking[J]. International Journal of Electrical Power and Energy Systems, 2011, 33(2): 315-321.
[11]  Kenné G, Goma R, Nkwawo H, et al. An improved direct feedback linearization technique for transient stability enhancement and voltage regulation of power generators[J]. Electrical Power and Energy Systems, 2010, 32(7): 809-816.
[12]  Okou F, Akhrif, Dessaint L. Decentralized multivariable voltage and speed regulator for large-scale power systems with guarantee of stability and transient performance[J]. International Journal of Control, 2005, 78(17): 1343-1358.
[13]  Zhu C, Zhou R, Wang Y. A new nonlinear voltage controller for power systems[J]. Electrical Power & Energy Systems, 1997, 19(1): 19-27.
[14]  Zhu C, Zhou R, Wang Y. A new decentralized nonlinear voltage controller for multimachine power systems[C]. The Fourth International Conference on Control and Automation, Montreal, Canada: IEEE, 2003: 525-530.
[15]  Gao H, Sun W, Shi P, et al. Robust sampled-data H∞ control for vehicle active suspension systems[J]. IEEE Transactions on Control Systems Technology, 2010, 18(1): 238-245.
[16]  倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论与分析[M]. 北京: 清华大学出版社, 2002.
[17]  卢强, 梅生伟, 孙元章. 电力系统非线性控制[M]. 2版. 北京: 清华大学出版社, 2008.
[18]  兰洲, 甘德强, 倪以信, 等. 电力系统非线性鲁棒自适应分散励磁控制设计[J]. 中国电机工程学报, 2006, 26(17): 1-5.
[19]  Karimi A, Feliachi A. Decentralized adaptive backstepping control of electric power systems[J]. Electric Power Systems Research, 2008, 78(3): 484-493.
[20]  Colbia-Vega A, de Leon-Morales J, Fridman L, et al. Robust excitation control design using sliding-mode technique for multimachine power systems[J]. Electrical Power Systems Research, 2008, 78(9): 1627-1634.
[21]  余向阳, 南海鹏, 余娟, 等. 自适应积分逆推滑模励磁控制研究[J]. 中国电机工程学报, 2009, 29(10): 74-77.
[22]  Wang Y, Cheng D, Li C, et al. Dissipative Hamiltonian realization and energy-based L 2- disturbance attenuation control of multimachine power systems[J]. IEEE Transactions on Automatic Control, 2003, 48(8): 1428-1433.
[23]  Mei S, Shen T, Hu W, et al. Robust H-infinity control of a Hamiltonian system with uncertainty and its application to a multi-machine power system[J]. Control Engineering Practice, 2005, 152(2): 202-210.
[24]  何斌, 张秀彬, 赵兴勇. 多机系统中励磁与SVC的协调控制[J]. 电工技术学报, 2008, 23(12): 152-159.
[25]  He Bin, Zhang Xiubin, Zhao Xingyong. Coordinated control of excitation and SVC in multi-machine power system[J]. Transactions of China Electrotechnical Society, 2008, 23(12): 152-159.
[26]  Dib W, Ortega R, Barabanov A, et al. A “Globally” convergent controller for multi-machine power systems using structure-preserving models[J]. IEEE Transaction on Automatic Control, 2009, 55(9): 2179-2185.
[27]  Yousef H, Hamdy M, Madbouly E, et al. Adaptive fuzzy decentralized control for interconnected MIMO nonlinear subsystems[J]. Automatica, 2009, 45(2): 456-462.
[28]  孙元章, 黎雄, 戴和平, 等. 同时改善稳定性和电压精度的非线性励磁控制器[J]. 中国电机工程学报, 1996, 16(5): 332-335.
[29]  Sun Yuanzhang, Li Xiong, Dai Heping, et al. A nonlinear excitation controller to improve both power system stability & voltage regulation accuracy[J]. Proceedings of the CSEE, 1996, 16(5): 332-335.
[30]  Wang Xihuai, Zheng Tianfu, Xiao Jianmei. Nonlinear robust excitation control strategy with voltage regulation[J]. Electric Power Automation Equipment, 2007, 27(8): 38-43.
[31]  Xie Xiaorong, Cui Wenjin, Tang Yiliang, et al. A novel nonlinear adaptive optimal excitation controller[J]. Automation of Electric Power Systems, 2001, 25(3): 50-55.
[32]  Verrelli C, Damm G. Robust transient stabilisation problem for a synchronous generator in a power network[J]. International Journal of Control, 2010, 83(3): 816-828.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133