全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

蒸散发测定方法研究进展

DOI: 10.11820/dlkxjz.2012.09.010, PP. 1186-1195

Keywords: 模型法,实测法,蒸散发测定

Full-Text   Cite this paper   Add to My Lib

Abstract:

蒸散发过程是水文循环的重要环节,也是全球能量交换的重要组成部分,决定了土壤-植被-大气系统中水、热传输过程,对其进行定量估算是评价陆地生态系统生产力、水源涵养能力、区域耗水及土壤水分运移的基础,是全球气候变化研究的重要内容。本文根据蒸散发测定思路和方法的不同,将蒸散发测定按照实测法和模型法两类方法进行总结,系统回顾了实测法和模型法的不同算法,评述不同方法的原理和优劣,并总结和分析了目前蒸散发测定工作中应重点研究的内容,指出未来蒸散发估算的发展方向,以期为相关研究的开展提供参考。

References

[1]  Fisher J B, Whittaker R J, Malhi Y. ET come home: Potentialevapotranspiration in geographical ecology. GlobalEcology and Biogeography, 2011, 20(1): 1-18.
[2]  Brutsaert W. Evaporation into the Atmosphere: Theory,History and Applications. The Netherland: Springer,1982.
[3]  Blaney H F, Criddle W D. Determining water requirementsin irrigated areas from climatological irrigation data.Technical Paper No. 96. US Department of Agriculture,SoilConservation Service,Washington, D C. 1950.
[4]  Hargreaves G H. Moisture availability and crop production.Transactions of the American Society of AgriculturalEngineers, 1975, 18(5): 980-984.
[5]  Granier A. Evaluation of transpiration in a Douglas-firstand by means of sap flow measurements. Tree Physiol,1987, 3(4): 309-320.
[6]  Fisher J B, Baldocchi D D, Mission L, et al. What thetowers don’t see at night: Nocturnal sap flow in trees andshrubs at two AmeriFlux sites in California. Tree Physiology,2007, 27: 597-610。
[7]  Hultine K R, Nagler P L, Morino K, et al. Sap flux-scaledtranspiration by tamarisk (Tamarix spp.) before, duringand after episodic defoliation by the saltcedar leaf beetle(Diorhabda carinulata). Agric. Forest Meteorol, 2010, 150(11): 1467-1475.
[8]  Bowen L S. The ratio of heat losses by conduction and byevaporation from any water surface. Physical Review,1926, 27(6): 779-787.
[9]  黄妙芬. 地表通量研究进展. 干旱区地理, 2003, 6(2):159-165.
[10]  Seguin B, Itier B. Using midday surface temperature toestimate daily evaporation from satellite thermal IR data.International Journal of Remote Sensing, 1983, 4(2):371-383.
[11]  Mastrorilli M, Katerji N, Rana G, et al. Daily actualevapotranspiration measured with TDR technique inMediterranean conditions. Agricultural and Forest Meteorology,1998, 90(1): 81-89.
[12]  Bisht G, Venturini V, Islam S, et al. Estimation of the netradiation using MODIS (Moderate Resolution ImagingSpectroradiometer). Remote Sensing of Environment,2005, 97(1): 52-67.
[13]  Su Z. The Surface Energy Balance System (SEBS) for estimationof turbulent heat fluxes. Hydrology and EarthSystem Sciences, 2002, 6(1): 85-99.
[14]  Menenti M, Choudhury B J. Parameterization of land surfaceevaporation by means of location dependent potentialevaporation and surface temperature range//Bolle HJ, Feddes R A, Kalma J D. Exchange processes at theland surface, 1993.
[15]  Roerink G J, Su Z, Menenti M. S-SEBI: A simple remotesensing algorithm to estimate the surface energy balance.Physics and Chemistry of the Earth. Part B: Hydrology,Oceans and Atmosphere, 2000, 25(2): 147-157.
[16]  Bastiaanssen W G M, Menenti M, Feddes R A, HoltslagAAM. A remote sensing surface energy balance algorithmfor land (SEBAL):1. Formulation. The Journal ofHydrology, 1998, 212: 198-212.
[17]  Anderson M C, Norman J M, Diak G R, et al. Atwo-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. RemoteSensing of Environment, 1997, 60(2): 195-216.
[18]  Baldocchi D. A Lagrangian random-walk model for simulatingwater vapor, CO2 and sensible heat flux densitiesand scalar profiles over and within a soybean canopy.Boundary Layer Meteorology, 1992, 61(1-2): 113-144.
[19]  Hope A S, Engstrom R, Stow D A. Relationship betweenAVHRR surface temperature and NDVI in arctic tundraecosystems. International Journal of Remote Sensing,2005, 26(8): 1771-1776.
[20]  Stewart J B, Kustus W P, Humes KS, et al. Sensible heatflux: Radiometric surface temperature relationship foreight semiarid areas. Journal of Applied Meteorology,1994, 33(9): 1110-1117.
[21]  Wild M, Ohmura A, Makowski K. Impact of global dimmingand brightening on global warming. GeophysicalResearch Letters, 2007, 34L04702, doi: 10. 1029/2006GL028031.
[22]  Xu C Y, Singh V P. Evaluation and generalization of radiation-based methods for calculating evaporation. HydrologicalProcesses, 2000, 14(2): 339-349.
[23]  Priestley C H B, Taylor R J. On the assessment of surfaceheat flux and evaporation using large scale parameters.MonthlyWeather Review, 1972, 100(2): 81-92.
[24]  Black TA. Evapotranspiration from Douglas-fir stands exposedto soil water deficits. Water Resources Research,1979, 15(1): 164-170.
[25]  Stewart R B, Rouse W R. Substantiation of the Priestleyand Taylor parameter alpha=1.26 for potential evaporationin high latitudes. Journal of Applied Meteorology,1977, 16(4): 649-650.
[26]  Fisher J B, Debiase T A, Qi Y, et al. Evapotranspirationmodels compared on a Sierra Nevada forest ecosystem.Environmental Modelling and Software, 2005, 20(6):783-796.
[27]  Fisher J B, Tu K P, Baldocchi D D. Global estimates ofthe land-atmosphere water flux based on monthlyAVHRR and ISLSCP-Ⅱdata, validated at 16 FLUXNETsites. Remote Sensing of Environment, 2008, 112(3):901-919.
[28]  Fisher J B, Malhi Y, Bonal D, et al. The land - atmospherewater flux in the tropics. Global Change Biology,2009, 15(11): 2694-2714.
[29]  Vinukollu R K, Wood E F, Ferguson C R, et al. Global estimatesof evapotranspiration for climate studies usingmulti-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sensing of Environment,2011, 115(3): 801-823.
[30]  Penman H L. Natural Evaporation from Open water, baresoil and grass. Proceedings of the Royal Society of London:A series, 1948, 193: 120-145.
[31]  Allen R G. Assessing integrity of weather data for referenceevapotranspiration estimation. Journal of Irrigationand Drainage Engineering, 1998, 122(2): 97-106.
[32]  Monteith J L. Evaporation and the environment. Symposiumof the Society of Exploratory Biology, 1965, 19(2):205-234.
[33]  Cleugh H A, Leuning R, Mu Q Z, et al. Regional evaporationestimates from flux tower and MODIS satellite data.Remote Sensing of Environment, 2007, 106(3): 285-304.
[34]  Mu Q Z, Heinsch F A, Zhao M S, et al. Development of aglobal evapotranspiration algorithm based on MODISand global meteorology data. Remote Sensing of Environment,2007, 111(4): 510-526.
[35]  Mu Q Z, Zhao M S, Running S W. Improvements to aMODIS global terrestrial evapotranspiration algorithm.Remote Sensing of Environment, 2011, 115(8):1781-1800.
[36]  Zhang K, Kimball J S, Mu Q Z, et al. Satellite based analysisof northern ET trends and associated changes in theregional water balance from 1983 to 2005.
[37]  Shuttleworth W J, Wallace J S. Evaporation from sparsecrops-an energy combination theory. Q.J. Royal MeteorologicalSociety, 1985, 111(469): 839-855.
[38]  Manare S, Bryan K. Climate calculations with a combinedocean-atmosphere model. Journal of the AtmosphericSciences, 1969, 26(1): 786-789.
[39]  Bouchet R J. Evapotranspiration reelle evapotranspirationpotentielle, signification climatique. Int. Assoc.Sci. Hydrol.,Gentbrugge, Belgium, Publ. 1963, 62:134-142.
[40]  Budyko M I. Climate and Life. San Diego, Califonia: AcademicPress, 1974: 508.
[41]  Yang D W, Sun F B, Liu Z Y, et al. Interpreting the complementaryrelationship in non-humid environmentsbased on the Budyko and Penman hypotheses. GeophysicalResearch Letters, 2006, 33(2): L18402.
[42]  Kite G W, Droogers P. Comparing evapotranspiration estimatesfrom satellites, hydrological models and field data.Journal of Hydrology, 2000, 229(1-2): 3-18.
[43]  Miralles D G, Gash J H, Holmes T R H, et al. Global canopyinterception from satellite observations. Journal ofGeophysical Research Atmospheres, 2010, 115, D16122,doi:10.1029/2009JD013530.
[44]  Valente F, David J S, Gash J H C. Modelling interceptionloss for two sparse eucalypt and pine forests in centralPortugal using reformulated Rutter and Gash analyticalmodels. Journal of Hydrology, 1997, 190(1-2): 141-162.
[45]  Carlyle-Moses D E, Price A G. An evaluation of the Gashinterception model in a northern hardwood stand. Journalof Hydrology, 1999, 214(1-4): 103-110.
[46]  Jetten V G. Interception of tropical rain forest: Performanceof a canopy water balance model. HydrologicalProcesses, 1996, 10(5): 671-685.
[47]  Rutter A J, Kershaw K A, Robins P C, et al. A predictivemodel of rainfall interception in forests, 1. Derivation ofthe model from observations in a plantation of corsicanpine. Agricultural Meteorology,1971, 9(1): 367-384.
[48]  Navar J, Bryan R. Interception loss and rainfall redistributionby 3 semiarid growing shrubs in Northeastern Mexico.Journal of Hydrology, 1990, 115(1-4): 51-63.
[49]  van Dijk A J M, Bruijnzeel L A. Modelling rainfall interceptionby vegetation of variable density using an adaptedanalytical model. Part 1. Model description. Journal ofHydrology, 2001, 247(4): 230-238.
[50]  Thornthwaite C W. An approach toward a rational classificationof climate. Geographical Review, 1948, 38(1):55-94.
[51]  Wilm H G. Statistical control of hydrologic data from experimentalwatersheds. Trans. Amer. Geophys. Union,1944, 29: 618-622.
[52]  Donohue R J, Roderick M L, McVicar T R. On the impor-tance of including vegetation dynamics in Budyko’s hydrologicalmodel. Hydrology and Earth System Sciences,2007, 11(2): 983-995.
[53]  Hu Z M, Yu G R, Zhou Y L, et al. Partitioning of evapotranspirationand its controls in four grassland ecosystems:Application of a two-source model. Agriculturaland Forest Meteorology, 2009, 149(9): 1410-1420.
[54]  Trenberth K E, Fasullo J T, Kiehl J. Earth’s global energybudget. Bulletin of American Meteorological Society,2009, 90(3): 311-323.
[55]  Allen R G, Pereira L, Howell T A, et al. Evapotranspirationinformation reporting: Ⅰ. Factors governing measurementaccuracy. Agricultural Water Management,2011, 98(6): 899-920.
[56]  Granier A. A new method of sap flow measurement intree stems. Annales des Sciences Forestieres, 1985, 42(2): 193-200.
[57]  Ohmura A. Objective criteria for rejecting data for Bowenratio flux calculations. Journal Appl. Meteorol, 1982,21(4): 595-598.
[58]  Howell T A, Schneider A D, Jensen M E. History of lysimeterdesign and use for evapotranspiration measurements.Lysimeters for evapotranspiration and environmentalmeasurements: Proceedings of the InternationalSymposium on Lysimetry. ASCE, Honolulu, HI, 1991:1-9.
[59]  Massman W J. A simple method for estimating frequencyresponse corrections for eddy covariance systems. Agriculturaland Forest Meteorology, 2000, 104(3): 185-198.
[60]  Swinbank W C. The measurement of vertical transfer ofheat and water vapour by eddies in the lower atmosphere.Journal of Atmospheric Sciences, 1951, 8(3): 135-145.
[61]  Sun X M, Zhu Z L, Wen X F, et al. The impact of averagingperiod on eddy fluxes observed at ChinaFLUX sites.Agricultural and Forest Meteorology, 2006, 137(3):188-193.
[62]  Baldocchi D, Falge E, Gu L H, et al. FLUXNET: A newtool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energyflux densities. Bulletin of the American MeteorologicalSociety, 2001, 82(11): 2415-2434.
[63]  Moncrieff J B, Malhi Y, Leuning R. The propagation oferrors in long-term measurements of land - atmospherefluxes of carbon and water. Global Change Biology,1996, 2(3): 231-240.
[64]  Hobbins M T, Ramirez J A, Brown T C. The complementaryrelationship in estimation of regional evapotranspiration:An enhanced Advection-Aridity model. Water ResourcesResearch, 2001, 37(5): 1389-1403.
[65]  Morton F L. Operational estimates of area evapotranspirationand their significance to the science and practice ofhydrology. Journal of Hydrology, 1983, 66(1-4): 1-76.
[66]  Navar J, Charles F, Jurado E. Spatial variations of interceptionloss components by Tamaulipan thornscrub innortheastern Mexico. Forest Ecology and Management,1999, 124(1): 231-239.
[67]  van Dijk A J M, Bruijnzeel L A. Modelling rainfall interceptionby vegetation of variable density using an adaptedanalytical model. Part 1. Model description. Journal ofHydrology, 2001, 247(4): 230-238.
[68]  Rutter A J, Kershaw K A, Robins P C, et al. A predictivemodel of rainfall interception in forests, 1. Derivation ofthe model from observations in a plantation of corsicanpine. Agricultural Meteorology,1971, 9(1): 367-384.
[69]  Foley J A, Ruth D, Gregory P A, et al. Global consequencesof land use. Science, 2005, 309(5734): 570-574.
[70]  Navar J, Bryan R. Interception loss and rainfall redistributionby 3 semiarid growing shrubs in Northeastern Mexico.Journal of Hydrology, 1990, 115(1-4): 51-63.
[71]  Feddema J J, Oleson K W, Bonan G B, et al. The Importanceof Land-Cover Change in Simulating Future Climates.Science, 2005, 310(5754): 1674-1678.
[72]  陈百明, 刘新卫, 杨红. LUCC研究的最新进展评述. 地理科学进展, 2003, 22(1): 22-29.
[73]  Navar J, Charles F, Jurado E. Spatial variations of interceptionloss components by Tamaulipan thornscrub innortheastern Mexico. Forest Ecology and Management,1999, 124(1): 231-239.
[74]  Voldoire A, Eickhout B, Schaeffer M, et al. Climate simulationof the twenty-first century with interactive landusechanges. Climate Dynamics, 2007, 29(2): 177-193.
[75]  王守春. 中国历史地理学的回顾与展望: 建所70 周年历史地理学研究成果与发展前景. 地理科学进展, 2011,30(4): 442-451.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133