全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2003 

侵蚀基准面下降对水系发育与产沙影响的实验研究

DOI: 10.11821/yj2003050004

Keywords: 基面下降,水系发育,产沙,非线性,实验分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 在3556mm/hr·cm2定雨强的人工降雨条件下,组成物质中径为0.021mm,侵蚀基准面两次下降的流域发育对比实验表明,水系发育以增加河道(沟道)数目及流域出口段河道下切、溯源侵蚀延伸长度两种方式进行最小消能,产沙过程具有明显的复杂响应特征。流域侵蚀产沙与水系分形维数间存在显著的非线性特征,分数维值与产沙量间呈不对称双曲线的关系。侵蚀基面下降导致流域势能的相对增大,在消能过程中,第一次基面下降带来的影响比第二次基面下降带来的影响要显著,在空间上,其影响随远离流域出口而减弱

References

[1]  Schumm S A. The Fluvial System1Wiley,New York,1977.338.
[2]  Horton R E. Erosional development of streams and t heir drainage basins:hydrophysical approach to quantitative morphology. Geol. Soc. Amer. Bull.,1945,56:275~370.
[3]  Leopold L B,Langbein W B1 The concept of energy in landscape evolution.U.S.Geol.Survey,Prof. Paper1 1962,500~A:20.
[4]  Shreve R L. Statistical law of stream numbers.J . Geol.,1966,74:17~37.
[5]  Shreve R L. Stream lengt h and basin areas in topologically random channel networks1 J . Geol.,1969,77:397~414.
[6]  Smart J S. Topological properties of channel networks.Geol.,Soc. Amer.Bull.,1969,80:757~774.
[7]  Smart J S1 The random model in fluvial geomorphology1In:Fluvial Geomorphology,ed. by Marie Morisawa,Publications in Geomorphology,State Universit y of New York,Binghamton,New York,1390.,1973,314.
[8]  Scheidegger A E. A stochastic model for drainage patterns into an intramontane trench. Bulletin.Intern.Assoc.Science. Hydro.,1967,12:636~638.
[9]  La Barbera P,Rosso R1On t he fractal dimension of stream networks1Water Resources Research,1989,25(4):735~741.
[10]  Gupta V K,Waymire E. Statistical self-similarit y in river networks parameterized by elevation1 Water Resources Research,1989,25(3):463~476.
[11]  Robert A,Roy A G. On t he fractal interpretation of t he mainstream lengt h drainage area relationship. Water ResourcesResearch,1990,26(5):839~842.
[12]  Tanzhou L uo1Fractal structure and properties of stream networks.Water Resource Research,1992,28(110):2981~2988.
[13]  Tarboton D G,Bras R L1Rodriguez2iturbe I A,Physical basis for drainage density.Geomorphology,1992,5(1-2):59~76.
[14]  李后强,艾南山.分形地貌学及地貌发育的分形模型.自然杂志,1992,15(7):516~518.
[15]  陈树群,钱沦海,冯智伟.台湾地区河川型态之碎形维度.中国台北:中国土木水利工程学刊,1995,7(1):63~72.
[16]  魏一鸣,金菊良,周成虎,等.1949—1994年中国洪水灾害成灾面积的时序分形特征.自然灾害学报,1998,7(1):83~86.
[17]  冯金良,张稳.海滦河流域水系分形.泥沙研究,1999,(1):62~65.
[18]  Feng Jinliang,Zhange Wen. The evolution of t he modern L uan-He River delta,nort h China. Geomorphology,1999,25(3,4):269~278.
[19]  Jin Desheng,Chen Hao,Guo Qingwu1 Material component to non-linear relation between sediment yield and drainagenetwork development:a flume experimental study. Journal of Geographical Sciences,2001,11(3):271~381.
[20]  Schumm S A,Mosley M P,Weaver W E. Experimental Fluvial Geomorphology.John Wiley and Sons,1987. 413.
[21]  张捷,包浩生.分形理论及其在地貌学中的应用.地理研究,1994,13(3):104~111.
[22]  Langbein W B,Leopold L B. Quasi-equilibrium state in channel morphology.Amer. J .Sci.,1964,262:782~794.
[23]  Shreve R L. Infinite topologically random channe. networks.J . Geol.,1967,75:179~186.
[24]  Scheidegger A E. Random graph patterns of drainage basins1Inter1 Assoc1 Sci. Hydro.Pub.,1967,76:415~425.
[25]  Mesa O J,Gapta V K. On t he main channel lengt h-area for channel networks.Water Resource Research,1987,23(11):2119~2122.
[26]  Ross R,Bachi B,Barbera P La1Fractal relation of mainstream lengt h to catchment area in river networks1 Water Resource Research,1991,27(3):381~387.
[27]  Nikora V I. Fractal structures of river plan forms1 Water Resources Research,1991,27(6):1327~1333.
[28]  冯平,冯焱.河流形态特征的分维计算方法.地理学报,1997,52(4):324~330.
[29]  金德生,陈浩,郭庆伍.河流纵剖面分形—非线性形态特征.地理学报,1997,52(2):154~161.
[30]  傅军,丁晶,邓育仁.嘉陵江流域形态及流量过程分维研究.成都科技大学学报,1995,(1):1~9.
[31]  冯金良,张稳.滦河现代三角洲演变的几何学特征.黄渤海海洋,1997,15(3):22~25.
[32]  汪富泉.泥沙运动及河床演变的分形特征与自组织规律研究.四川大学博士学位论文,1999. 106.
[33]  Roger Mousa1Is t he drainage network a fractal Sierpinski space?Water Resources Research,1997,33(10):2399~2408.
[34]  Jin Desheng,Chen Hao,Guo Qingwu1 A preliminary experimental study on non-linear relation of sediment yield todrainage network development. International Journal of Sediment Research,1999,14(2):9~18.
[35]  Strahler A N1 Dimensional analysis applied to fluvial eroded landforms. Geol.Soc.Amer1 Bull1,1958,69:279~300.
[36]  金德生,刘书楼,郭庆伍.应用河流地貌实验与模拟研究.北京:地震出版社,1992.98.
[37]  金德生,郭庆伍.均质流域地貌发育过程实验研究.金德生主编.地貌实验与模拟1北京:地震出版社,1995.79~101.
[38]  金德生,郭庆伍.流水地貌系统模型实验的相似性问题.金德生主编,地貌实验与模拟.北京:地震出版社,1995. 265~268.
[39]  Strahler A N1 Quantitative analysis of watershed geomorphology.Am. Geography. Union Trans.,1957,38:913~920.
[40]  何隆华,赵宏.水系的分形维数及其意义.地理科学,1996,16(2):124~128.
[41]  La Barbera P,Rosso R. On t he fractal dimension of stream networks. Water Resources Research,1989,25(4):735~741.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133