Schumm S A. The Fluvial System1Wiley,New York,1977.338.
[2]
Horton R E. Erosional development of streams and t heir drainage basins:hydrophysical approach to quantitative morphology. Geol. Soc. Amer. Bull.,1945,56:275~370.
[3]
Leopold L B,Langbein W B1 The concept of energy in landscape evolution.U.S.Geol.Survey,Prof. Paper1 1962,500~A:20.
[4]
Shreve R L. Statistical law of stream numbers.J . Geol.,1966,74:17~37.
[5]
Shreve R L. Stream lengt h and basin areas in topologically random channel networks1 J . Geol.,1969,77:397~414.
[6]
Smart J S. Topological properties of channel networks.Geol.,Soc. Amer.Bull.,1969,80:757~774.
[7]
Smart J S1 The random model in fluvial geomorphology1In:Fluvial Geomorphology,ed. by Marie Morisawa,Publications in Geomorphology,State Universit y of New York,Binghamton,New York,1390.,1973,314.
[8]
Scheidegger A E. A stochastic model for drainage patterns into an intramontane trench. Bulletin.Intern.Assoc.Science. Hydro.,1967,12:636~638.
[9]
La Barbera P,Rosso R1On t he fractal dimension of stream networks1Water Resources Research,1989,25(4):735~741.
[10]
Gupta V K,Waymire E. Statistical self-similarit y in river networks parameterized by elevation1 Water Resources Research,1989,25(3):463~476.
[11]
Robert A,Roy A G. On t he fractal interpretation of t he mainstream lengt h drainage area relationship. Water ResourcesResearch,1990,26(5):839~842.
[12]
Tanzhou L uo1Fractal structure and properties of stream networks.Water Resource Research,1992,28(110):2981~2988.
[13]
Tarboton D G,Bras R L1Rodriguez2iturbe I A,Physical basis for drainage density.Geomorphology,1992,5(1-2):59~76.
Feng Jinliang,Zhange Wen. The evolution of t he modern L uan-He River delta,nort h China. Geomorphology,1999,25(3,4):269~278.
[19]
Jin Desheng,Chen Hao,Guo Qingwu1 Material component to non-linear relation between sediment yield and drainagenetwork development:a flume experimental study. Journal of Geographical Sciences,2001,11(3):271~381.
[20]
Schumm S A,Mosley M P,Weaver W E. Experimental Fluvial Geomorphology.John Wiley and Sons,1987. 413.
[21]
张捷,包浩生.分形理论及其在地貌学中的应用.地理研究,1994,13(3):104~111.
[22]
Langbein W B,Leopold L B. Quasi-equilibrium state in channel morphology.Amer. J .Sci.,1964,262:782~794.
[23]
Shreve R L. Infinite topologically random channe. networks.J . Geol.,1967,75:179~186.
[24]
Scheidegger A E. Random graph patterns of drainage basins1Inter1 Assoc1 Sci. Hydro.Pub.,1967,76:415~425.
[25]
Mesa O J,Gapta V K. On t he main channel lengt h-area for channel networks.Water Resource Research,1987,23(11):2119~2122.
[26]
Ross R,Bachi B,Barbera P La1Fractal relation of mainstream lengt h to catchment area in river networks1 Water Resource Research,1991,27(3):381~387.
[27]
Nikora V I. Fractal structures of river plan forms1 Water Resources Research,1991,27(6):1327~1333.
Roger Mousa1Is t he drainage network a fractal Sierpinski space?Water Resources Research,1997,33(10):2399~2408.
[34]
Jin Desheng,Chen Hao,Guo Qingwu1 A preliminary experimental study on non-linear relation of sediment yield todrainage network development. International Journal of Sediment Research,1999,14(2):9~18.
[35]
Strahler A N1 Dimensional analysis applied to fluvial eroded landforms. Geol.Soc.Amer1 Bull1,1958,69:279~300.