全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于三维最小二乘方法的空间直线度误差评定

DOI: 10.13700/j.bh.1001-5965.2013.0644, PP. 1477-1480

Keywords: 空间直线度误差,空间直线拟合,空间投影,坐标变换,三维最小二乘法

Full-Text   Cite this paper   Add to My Lib

Abstract:

空间直线度误差是评定机械产品精度的一项重要指标,实际工程中对空间直线度误差评定算法的精度要求越来越高.为了准确评定空间直线度误差,参照国家标准(GB/T11336—2004),采用三维最小二乘方法建立了空间直线拟合的数学模型,并给出了该数学模型的精确解.基于最小二乘拟合中线,采用空间投影、坐标变换和格点法求得最小二乘中线包容圆柱面直径.采用数值算例验证了新方法的有效性.提出的空间直线度误差评定方法精度高、鲁棒性好且易于编程实现.

References

[1]  张新宝,谢江平. 空间直线度误差评定的逼近最小包容圆柱法[J].华中科技大学学报:自然科学版,2011,39(12):6-9 Zhang Xinbao,Xie Jiangping.Evaluating spatial straightness errorby approaching minimum enclosure cylinder[J].Journal of Huazhong University of Science and Technology:Natural Science Edition,2011,39(12):6-9(in Chinese)
[2]  GB/T 11336—2004 直线度误差检测[S] GB/T 11336—2004 Measurement of departures from straightness[S](in Chinese)
[3]  廖平,喻寿益. 基于遗传算法的空间直线度误差的求解[J].中南大学学报:自然科学版,1998,29(6):586-588 Liao Ping,Yu Shouyi.A method of calculating 3-D line error using genetic algorithms[J].Journal of Central South University:Science and Technology,1998,29(6):586-588(in Chinese)
[4]  李淑娟,刘云霞. 基于坐标变换原理的最小区域法评定空间直线度误差[J].计测技术,2006,26(1):24-25 Li Shujuan,Liu Yunxia.A method for minimum zone evaluation of space linearity error based on principle of coordinate transformation[J].Metrology & Measurement Technology,2006, 26(1):24-25(in Chinese)
[5]  Ding Y,Zhu L M, Ding H.Semidefinite programming for chebyshev fitting of spatial straight line with applications to cutter location planning and tolerance evaluation[J].Precision Engineering,2007,31(4):364-368
[6]  黄富贵,崔长彩. 任意方向上直线度误差的评定新方法[J].机械工程学报,2008,44(7):221-224 Huang Fugui,Cui Changcai.New method for evaluating arbitrary spatial straightness error[J].Chinese Journal of Mechanical Engineering,2008,44(7):221-224(in Chinese)
[7]  Wen X L, Xu Y X,Li H S,et al.Monte Carlo method for the uncertainty evaluation of spatial straightness error based on new generation geometrical product specification[J].Chinese Journal of Mechanical Engineering,2012,25(5):875-881
[8]  Endrias D H, Feng H Y,Ma J,et al.A combinational optimization approach for evaluating minimum-zone spatial straightness errors[J].Measurement,2012,45(5):1170-1179
[9]  胡仲勋,杨旭静, 金湘中.LSM算法评定空间直线度误差的分析与改进[J].湖南大学学报:自然科学版,2010,37(2):27-31 Hu Zhongxun,Yang Xujing,Jin Xiangzhong.Analysis and improvement of the LSM algorithm for assessing spatial straightness error[J].Journal of Hunan University:Natural Sciences,2010,37(2):27-31(in Chinese)
[10]  郭际明,向巍, 尹洪斌.空间直线拟合的无迭代算法[J].测绘通报,2011(2):24-25 Guo Jiming,Xiang Wei,Yin Hongbin.Three-dimensional line fitting without iteration[J].Bulletin of Surveying and Mapping,2011(2):24-25(in Chinese)
[11]  胡仲勋,杨旭静, 王伏林.空间直线度误差评定的LSABC算法研究[J].工程设计学报,2008,15(3):187-190 Hu Zhongxun,Yang Xujing,Wang Fulin.Research on LSABC algorithm for evalution of spatial straightness error[J].Journal of Engineering Design,2008,15(3):187-190(in Chinese)
[12]  胡仲勋, 王伏林,周海萍.空间直线度误差评定的新算法[J].机械科学与技术,2008,27(7):879-882 Hu Zhongxun,Wang Fulin,Zhou Haiping.A new algorithm for evaluation of spatial straightness error[J].Mechanical Science and Technology for Aerospace Engineering,2008,27(7): 879882(in Chinese)
[13]  胡仲勋,杨旭静, 金湘中.评定空间直线度误差的3DLSA算法研究[J].中国机械工程,2010,21(3):325-329 Hu Zhongxun,Yang Xujing,Jin Xiangzhong.Research on 3DLSA for evaluating spatial straightness errors[J].China Mechanical Engineering,2010,21(3):325-329(in Chinese)
[14]  张筑生. 数学分析新讲(第二册)[M].北京:北京大学出版社,1990:294-295 Zhang Zhusheng.New lecture of mathematical analysis(book two)[M].Beijing:Peking University Press,1990:294-295(in Chinese)
[15]  Wen X L,, Song A G.An improved genetic algorithm for planar and spatial straightness error evaluation[J].International Journal of Machine Tools & Manufacture,2003,43(11): 1157-1162

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133