全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

电液飞行转台的分数阶积分滑模非线性控制

DOI: 10.13700/j.bh.1001-5965.2013.0689, PP. 1411-1416

Keywords: 液压伺服机构,飞行转台,分数阶,滑模控制,非线性控制系统

Full-Text   Cite this paper   Add to My Lib

Abstract:

电液飞行转台是飞控系统半实物仿真测试的关键设备,它是在实验室条件下复现飞行器运动姿态的高精尖试验设备,具有重大经济价值和国防战略意义.为提高该设备的动态跟踪精度,提出一种基于分数阶积分滑模的非线性鲁棒控制策略.在积分滑模控制器中引入分数阶算子,能更有效地提升系统瞬态响应,并能提供更多的控制自由度.同时基于Lyapunov分析方法证明了该控制器在存在参数不确定、强外干扰力矩和未知非线性摩擦特性等情况下仍能保证系统的全局渐近稳定性.以某型电液飞行转台外框阀控马达为例,针对多种运动工况进行仿真分析,结果表明该方法能有效提高系统的瞬态性能和鲁棒能力.

References

[1]  管成,朱善安. 一类非线性系统的微分与积分滑模自适应控制及其在电液伺服系统中的应用[J].中国电机工程学报,2005,25(4):103-108 Guan Cheng,Zhu Shanan.Derivation and integral sliding mode adaptive control for a class of nonlinear system and its application to an electro-hydraulic servo system[J].Proceedings of the CSEE,2005,25(4):103-108(in Chinese)
[2]  王春行. 液压控制系统[M].北京:机械工业出版社,1998:41-43 Wang Chunxing.Hydraulic control system[M].Beijing:China Machine Press,1998:41-43(in Chinese)
[3]  韩松杉,焦宗夏, 汪成文,等.基于神经网络的电液转台非线性积分滑模控制[J].北京航空航天大学学报,2014,40(3):321-326 Han Songshan,Jiao Zongxia,Wang Chengwen,et al.Integral sliding mode nonlinear controller of electrical-hydraulic flight simulator based on neural network[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(3):321-326(in Chinese)
[4]  王锴,王占林, 付永领,等.电液仿真转台控制系统设计与仿真研究[J].宇航学报,2007,28(1):178-182 Wang Kai,Wang Zhanlin,Fu Yongling,et al.Design and resrarch of electronic-hydraulic rotary-table[J].Journal of Astronautics,2007,28(1):178-182(in Chinese)
[5]  邵俊鹏,王仲文, 李建英,等.电液位置伺服系统模型辨识与非线性控制[J].机械科学与技术,2010,29(4):488-492 Shao Junpeng,Wang Zhongwen,Li Jianying,et al.Model identification and nonlinear control of an electro-hydraulic position servo system[J].Mechanical Science and Technology for Aerospace Engineering,2010,29(4):488-492(in Chinese)
[6]  刘金琨. 滑模变结构控制MATLAB仿真[M].2版.北京:清华大学出版社,2012:1-3 Liu Jinkun.Sliding mode control design and Matlab simulation[M]. 2nd ed.Beijing:Tsinghua University Press,2012:1-3(in Chinese)
[7]  Liu Y, Handroos H.Technical note sliding mode control for a class of hydraulic position servo[J].Mechatronics,1999,9(1):111-123
[8]  Bonchis A, Corke P I,Rye D C,et al.Variable structure methods in hydraulic servo systems control[J].Automatica,2001, 37(4): 589-595
[9]  Chern T L, Wong J S.DSP based integral variable structure control for DC motor servo drivers[J].IEE Proceedings:Control Theory and Applications,1995,142(5):444-450
[10]  Seshagiri S, Khalil H K.Robust output feedback regulation of minimum-phase nonlinear systems using conditional integrator[J]. Automatica,2005,41(1):43-54
[11]  Podlubny I. Fractional differential equations: an introduction to fractional derivatives,fractional differential equations,to methods of their solution and some of their applications[M].New York:Academic Press,1998
[12]  Machado J T, Kiryakova V,Mainardi F.Recent history of fractional calculus[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(3):1140-1153
[13]  Nagoya H. Realizations of affine Weyl group symmetries on the quantum Painlevé equations by fractional calculus[J].Letters in Mathematical Physics,2012,102(3):297-321
[14]  Yan Y,Kou C. Stability analysis for a fractional differential model of HIV infection of CD4+T-cells with time delay[J].Mathematics and Computers in Simulation,2012,82(9): 15721585
[15]  Jian B,Feng X C. Fractional-order anisotropic diffusion for image denoising[J].Image Processing,IEEE Transactions on,2007,16(10):2492-2502
[16]  Oustaloup A, Moreau X,Nouillant M.CRONE suspension[J].Control Engineering Practice,1996,4(8):1101-1108
[17]  Efe M O. Integral sliding mode control of a quadrotor with fractional order reaching dynamics[J].Transactions of the Institute of Measurement and Control,2011,33(8):985-1003
[18]  Efe M O. Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm[J].IEEE Transactions on Systems,Man,and Cybernetics.Part B:Cybernetics,2008,38(6): 1561-1 570
[19]  Delavari H, Ghaderi R,Ranjbar A,et al.Fuzzy fractional order sliding mode controller for nonlinear systems[J].Communications in Nonlinear Science and Numerical Simulation,2010, 15(4): 963-978
[20]  Efe M O. Fractional order sliding mode control with reaching law[J].Turkish Journal of Electrical Engineering & Computer Sciences,2010,18(5):731-747
[21]  Zhang B T, Pi Y G.Design of fractional order sliding mode controller based on parameters tuning[J].Przeglad Elektrotechniczny,2012,88(10):172-175
[22]  Dadras S, Momeni H R.Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty[J].Communications in Nonlinear Science and Numerical Simulation,2012,17(1):367-377
[23]  Liu R, Alleyne A.Nonlinear force/pressure tracking of an electro-hydraulic actuator[J].Journal of Dynamic Systems,Measurement,and Control,2000,122(3):232-237
[24]  Yao B, Bu F P,Reedy J,et al.Adaptive robust motion control of single-rod hydraulic actuators:theory and experiments[J].IEEE-ASME Transactions on Mechatronics,2000,5(1): 7991
[25]  Duraiswamy S, Chiu G T C.Nonlinear adaptive nonsmooth dynamic surface control of electro-hydraulic systems[C]//American Control Conference.[S.l.]:Institute of Electrical and Electronics Engineers Inc,2003,4:3287-3292

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133