全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于背景属性的目标识别

DOI: 10.13700/j.bh.1001-5965.2013.0750, PP. 1702-1706

Keywords: 属性,目标识别,上下文信息,支持向量机,特征融合

Full-Text   Cite this paper   Add to My Lib

Abstract:

属性是图像的语义描述,可以表示图像中某些内容的存在与否,它可以是物体的形状、材质、部件、类别以及功能,也可以是场景的类别以及上下文信息等.由于目标类别与所在背景存在相关关系,提出基于背景属性和目标属性相融合的前景目标识别方法,即对每种背景属性和目标属性分别训练支持向量机(SVM)分类器,并将属性在对应分类器上的得分进行串联组成新的特征,并训练得到最终分类器.对a-Pascal数据库中每幅图像,人工标注了10种背景属性,结合已有的目标属性,进行目标识别实验.与传统方法、基于目标属性的分类方法以及其他前景、背景相结合算法的对比实验结果表明,所提算法比其他算法提高大约2%,背景属性有助于提高目标识别率.

References

[1]  Farhadi A,Hejrati M,Sadeghi M,et al.Every picture tells a story:generating sentences from images[C]//Computer Vision-ECCV 2010.Heidelberg:Springer Verlag,2010,6314(4):15-29
[2]  Farhadi A,Endres I,Hoiem D,et al.Describing objects by their attributes[C]//2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.Piscataway,NJ:IEEE Computer Society,2009:1778-1785
[3]  Yu F X,Cao L L,Feris R S,et al.Designing category-level attributes for discriminative visual recognition[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D C:IEEE Computer Society,2013:771-778
[4]  Wang Y,Mori G.A discriminative latent model of object classes and attributes[C]//Lecture Notes in Computer Science.Heidelberg:Springer Verlag,2010(PART5):155-168
[5]  Parikh D,Grauman K.Relative attributes[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway,NJ:IEEE,2011:503-510
[6]  Lampert C H,Nickisch H,Harmeling S.Learning to detect unseen object classes by between-class attribute transfer[C]//2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.Piscataway,NJ:IEEE Computer Society,2009:951-958
[7]  Siddiquie B,Feris R S,Davis L S.Image ranking and retrieval based on multi-attribute queries[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Computer Society,2011:801-808
[8]  Kumar N,Berg A C,Belhumeur P N,et al.Attribute and simile classifiers for face verification[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway,NJ:IEEE,2009:365-372
[9]  Liu J G,Kuipers B,Savarese S.Recognizing human actions by attributes[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Computer Society,2011:3337-3344
[10]  Duan K,Parikh D,Crandall D,et al.Discovering localized attributes for fine-grained recognition[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D C:IEEE Computer Society,2012:3474-3481
[11]  Torralba A,Murphy K P,Freeman W T,et al.Context-based vision system for place and object recognition[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway,NJ:IEEE,2003,1:273-280
[12]  Li F F,Perona P.A Bayesian hierarchical model for learning natural scene categories[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Computer Society,2005,2:524-531
[13]  Dalal N,Triggs B.Histograms of oriented gradients for human detection[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Computer Society,2005,1:886-893
[14]  Varma M,Zisserman A.A statistical approach to texture classification from single images[J].International Journal of Computer Vision,2005,62(1/2):61-81
[15]  Oliva A,Torralba A.Modeling the shape of the scene:a holistic representation of the spatial envelope[J].International Journal of Computer Vision,2001,42(3):145-175
[16]  Fan R E,Chang K W,Hsieh C J,et al.LIBLINEAR:a library for large linear classification[J].The Journal of Machine Learning Research,2008,9:1871-1874

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133