全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于RoeM格式思想的激波稳定格式构造

DOI: 10.13700/j.bh.1001-5965.2013.0341, PP. 613-617

Full-Text   Cite this paper   Add to My Lib

Abstract:

Roe格式有着较高的黏性分辨率以及间断分辨率,但它在实际流动模拟时很容易出现激波不稳定现象.此外,它在无黏定常计算时无法保证总焓守恒.为了在保留Roe格式分辨率高的优点基础上改善其上述缺陷,将RoeM格式与高阶激波判别方法相结合,提出了RoeMW1,RoeMW2格式.计算结果表明,在流动较为简单的情况下提出的RoeMW1,RoeMW2格式可以有效避免激波不稳定现象的出现且保持总焓守恒.而在一些较为复杂的流动结构计算中,虽然比之于RoeM格式均有所改善,但在RoeMW1基础上改进的RoeMW2格式在间断模拟时鲁棒性更强.

References

[1]  Liou M S. Progress toward an improved CFD method:AUSM+[R].AIAA 95-1701-CP,1995
[2]  Kitamura K, Shima E.Towards shock-stable and accurate hypersonic heating computations: a new pressure flux for AUSM-family schemes[J].Journal of Computational Physics,2013,245: 62-83
[3]  Kitamura K, Shima E.Towards shock-stable and accurate hypersonic heating computations: a new pressure flux for AUSM-family schemes[J].Journal of Computational Physics,2013,245: 62-83
[4]  Liou M S. A further development of the AUSM_scheme, towards robust and accurate solutions for all speeds[R].AIAA 2003-4116,2003
[5]  Liou M S. A further development of the AUSM_scheme, towards robust and accurate solutions for all speeds[R].AIAA 2003-4116,2003
[6]  阎超. 计算流体力学方法及应用[M].2版.北京:北京航空航天大学出版社,2006 Yan Chao.Computational methods and applications[M].2nd ed.Beijing:Beihang University Press,2006(in Chinese)
[7]  阎超. 计算流体力学方法及应用[M].2版.北京:北京航空航天大学出版社,2006 Yan Chao.Computational methods and applications[M].2nd ed.Beijing:Beihang University Press,2006(in Chinese)
[8]  Kitamura K, Shima E,Nakamura Y,et al.Evaluation of Euler fluxes for hypersonic heating computations[J].AIAA Journal,2010,48(4):763-776
[9]  Kitamura K, Shima E,Nakamura Y,et al.Evaluation of Euler fluxes for hypersonic heating computations[J].AIAA Journal,2010,48(4):763-776
[10]  Kim K H, Kim C,Rho O H.Cures for the shock instability, development of a shock-stable Roe scheme[J].Journal of Computational Physics,2003,185(2):342-374
[11]  Jiang G S, Shu C W.Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics,1996,126(1):202-208
[12]  Liou M S. Mass flux schemes and connection to shock instability[J]. Journal of Computational Physics,2000,160(2):623-648
[13]  Toro E F. Riemann solvers and numerical methods for fluid dynamics[M].Berlin:Springer-Verlag,2009
[14]  Toro E F. Riemann solvers and numerical methods for fluid dynamics[M].Berlin:Springer-Verlag,2009
[15]  Jameson A, Schmidt W,Turkel E.Numerical solutions of the Euler equations by finite volume methods using Runge-Kuttta time-stepping schemes[R].AIAA 81-1259,1981
[16]  Jameson A, Schmidt W,Turkel E.Numerical solutions of the Euler equations by finite volume methods using Runge-Kuttta time-stepping schemes[R].AIAA 81-1259,1981
[17]  Roe P L. Approximate Riemann solvers, parameter vectors and difference schemes[J].J Comp Phys,1981,43:357-372
[18]  Roe P L. Approximate Riemann solvers, parameter vectors and difference schemes[J].J Comp Phys,1981,43:357-372
[19]  van Leer B. Flux vector splitting for the Euler equations[J].Lecture Notes in Physics,1982,170:507-512
[20]  van Leer B. Flux vector splitting for the Euler equations[J].Lecture Notes in Physics,1982,170:507-512
[21]  Liou M S, Steffen Jr C J.A new flux splitting scheme[J].Journal of Computational Physics,1993,107(1):23-39
[22]  Liou M S, Steffen Jr C J.A new flux splitting scheme[J].Journal of Computational Physics,1993,107(1):23-39
[23]  Liou M S. Progress toward an improved CFD method:AUSM+[R].AIAA 95-1701-CP,1995
[24]  Kim K H, Kim C,Rho O H.Cures for the shock instability, development of a shock-stable Roe scheme[J].Journal of Computational Physics,2003,185(2):342-374
[25]  Jiang G S, Shu C W.Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics,1996,126(1):202-208
[26]  Kitamura K, Shima E.Improvements of simple low-dissipation AUSM against shock instabilities in consideration of interfacial speed of sound[C]//Proceedings of ECCOMAS CFD.Libson:[s.n.],2010:14-17
[27]  Jameson A. Analysis and design of numerical schemes for gas dynamics,2:artificial diffusion and discrete shock structure[J].International Journal of Computational Fluid Dynamics,1995,5(1/2):1-38
[28]  Liou M S. Mass flux schemes and connection to shock instability[J]. Journal of Computational Physics,2000,160(2):623-648
[29]  Einfeldt B, Munz C D,Roe P L,et al.On Godunov-type methods near low densities[J]. J Comput Phys,1991,92(2): 273-295
[30]  Peery K M, Imlay S T.Blunt-body flow simulations[R].AIAA88-2904,1988
[31]  Kitamura K, Shima E.Improvements of simple low-dissipation AUSM against shock instabilities in consideration of interfacial speed of sound[C]//Proceedings of ECCOMAS CFD.Libson:[s.n.],2010:14-17
[32]  Woodward P, Colella P.The numerical simulation of two-dimensional fluid flow with strong shocks[J].Journal of Computational Physics,1984,54(1):115-173
[33]  Jameson A. Analysis and design of numerical schemes for gas dynamics,2:artificial diffusion and discrete shock structure[J].International Journal of Computational Fluid Dynamics,1995,5(1/2):1-38
[34]  Einfeldt B, Munz C D,Roe P L,et al.On Godunov-type methods near low densities[J]. J Comput Phys,1991,92(2): 273-295
[35]  Peery K M, Imlay S T.Blunt-body flow simulations[R].AIAA88-2904,1988
[36]  Woodward P, Colella P.The numerical simulation of two-dimensional fluid flow with strong shocks[J].Journal of Computational Physics,1984,54(1):115-173

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133