The introduction of da Vinci Robotic Surgery to the field of Gynecology has resulted in large changes in surgical management. The robotic platform allows less experienced laparoscopic surgeons to perform more complex procedures. In general gynecology and reproductive gynecology, the robot is being increasingly used for procedures such as hysterectomies, myomectomies, adnexal surgery, and tubal anastomosis. Among urogynecology the robot is being utilized for sacrocolopexies. In the field of gynecologic oncology, the robot is being increasingly used for hysterectomies and lymphadenectomies in oncologic diseases. Despite the rapid and widespread adoption of robotic surgery in gynecology, there are no randomized trials comparing its efficacy and safety to other traditional surgical approaches. Our aim is to update previously published reviews with a focus on only comparative observational studies. We determined that, with the right amount of training and skill, along with appropriate patient selection, robotic surgery can be highly advantageous. Patients will likely have less blood loss, less post-operative pain, faster recoveries, and fewer complications compared to open surgery and potentially even laparoscopy. However, until larger, well-designed observational studies or randomized control trials are completed which report long-term outcomes, we cannot definitively state the superiority of robotic surgery over other surgical methods. 1. Background Minimally invasive surgery (MIS) has revolutionized the management of gynecologic disorders over the last 30 years. However, the most substantial improvements have come with the advent of robotic surgery. Initially, traditional laparoscopy afforded less invasive approaches to hysterectomies, tubal ligations, adnexal surgery, and even lymphadenectomies and radical hysterectomies. However, not all surgeons are comfortable with the laparoscopic approach due to its steep and extended learning curve, nor are all patients and procedures amenable to traditional laparoscopy. In fact, the majority of advanced gynecologic surgeries are still being performed through an abdominal incision. A recent study looking at the rates of open versus vaginal or laparoscopic hysterectomies from 2000 to 2005 at teaching and nonteaching hospitals in Illinois revealed that teaching hospitals were significantly less likely to perform abdominal hysterectomies (OR 0.69) after adjusting for confounding variables, but the overall rates of abdominal hysterectomies at teaching and nonteaching hospitals were still 82% and 77%, respectively [1].
References
[1]
F. F. Tu, J. L. Beaumont, S. Senapati, and T. E. J. Gordon, “Route of hysterectomy influence and teaching hospital status,” Obstetrics and Gynecology, vol. 114, no. 1, pp. 73–78, 2009.
[2]
M. F. Paraiso, M. D. Walters, R. R. Rackley, S. Melek, and C. Hugney, “Laparoscopic and abdominal sacral colpopexies: a comparative cohort study,” The American Journal of Obstetrics & Gynecology, vol. 192, no. 5, pp. 1752–1758, 2005.
[3]
V. Mais, S. Ajossa, S. Guerriero, M. Mascia, E. Solla, and G. B. Melis, “Laparoscopic versus abdominal myomectomy: a prospective, randomized trial to evaluate benefits in early outcome,” The American Journal of Obstetrics & Gynecology, vol. 174, no. 2, pp. 654–658, 1996.
[4]
J. Marescaux and F. Rubino, “The ZEUS robotic system: experimental and clinical applications,” Surgical Clinics of North America, vol. 83, no. 6, pp. 1305–1315, 2003.
[5]
R. Peplinski, “Past, present and future of the Da Vinci robot,” in 2nd UK Robotic Urology Course, Guy's Hospital, London, UK, 2006.
[6]
C. A. Matthews, N. Reid, V. Ramakrishnan, K. Hull, and S. Cohen, “Evaluation of the introduction of robotic technology on route of hysterectomy and complications in the first year of use,” The American Journal of Obstetrics & Gynecology, vol. 203, no. 5, pp. 499 e1–499 e5, 2010.
[7]
P.J. Paley, D. S. Veljovich, C. A. Shah, et al., “Surgical outcomes in gynecologic oncology in the era of robotics: analysis of first 1000 cases,” The American Journal of Obstetrics & Gynecology, vol. 204, no. 6, pp. 551.e1–551.e9, 2011.
[8]
J. E. Cho, A. H. A. Shamshirsaz, C. Nezhat, C. Nezhat, and F. Nezhat, “New technologies for reproductive medicine: laparoscopy, endoscopy, robotic surgery and gynecology. A review of the literature,” Minerva Ginecologica, vol. 62, no. 2, pp. 137–167, 2010.
[9]
R. W. Holloway, S. D. Patel, and S. Ahmad, “Robotic surgery in gynecology,” Scandinavian Journal of Surgery, vol. 98, no. 2, pp. 96–109, 2009.
[10]
C. A. Matthews, “Applications of robotic surgery in gynecology,” Journal of Women's Health, vol. 19, no. 5, pp. 863–867, 2010.
[11]
A. Tinelli, A. Malvasi, and S. Gustapane, “Robotic assisted surgery in gynecology: current insights and future perspectives,” Recent Patents on Biotechnology, 2011.
[12]
A. C. Frick and T. Falcone, “Robotics in gynecologic surgery,” Minerva Ginecologica, vol. 61, no. 3, pp. 187–199, 2009.
[13]
C. C. G. Chen and T. Falcone, “Robotic gynecologic surgery: past, present, and future,” Clinical Obstetrics and Gynecology, vol. 52, no. 3, pp. 335–343, 2009.
[14]
S. Maeso, M. Reza, J. A. Mayol et al., “Efficacy of the Da Vinci surgical system in abdominal surgery compared with that of laparoscopy: a systematic review and meta-analysis,” Annals of Surgery, vol. 252, no. 2, pp. 254–262, 2010.
[15]
M. Reza, S. Maeso, J. A. Blasco, and E. Andradas, “Meta-analysis of observational studies on the safety and effectiveness of robotic gynaecological surgery,” The British Journal of Surgery, vol. 97, no. 12, pp. 1772–1783, 2010.
[16]
M. Egger, G. D. Smith, and K. O'Rourke, Systematic Reviews in Health Care: Meta-analysis in Context, BMJ Publishing Group, BMA House, London, UK, 2nd edition, 2001.
[17]
D. F. Stroup, J. A. Berlin, S. C. Morton et al., “Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group,” Journal of the American Medical Association, vol. 283, no. 15, pp. 2008–2012, 2000.
[18]
C. Nezhat, O. Lavie, S. Hsu, J. Watson, O. Barnett, and M. Lemyre, “Robotic-assisted laparoscopic myomectomy compared with standard laparoscopic myomectomy-a retrospective matched control study,” Fertility and Sterility, vol. 91, no. 2, pp. 556–559, 2009.
[19]
A. W. Partin, J. B. Adams, R. G. Moore, and L. R. Kavoussi, “Complete robot-assisted laparoscopic urologic surgery: a preliminary report,” Journal of the American College of Surgeons, vol. 181, no. 6, pp. 552–557, 1995.
[20]
U. Kappert, J. Schneider, R. Cichon et al., “Development of robotic enhanced endoscopic surgery for the treatment of coronary artery disease,” Circulation, vol. 104, no. 12, supplement 1, pp. i102–i107, 2001.
[21]
T. Falcone, J. Goldberg, A. Garcia-Ruiz, H. Margossian, and L. Stevens, “Full robotic assistance for laparoscopic tubal anastomosis: a case report,” Journal of Laparoendoscopic and Advanced Surgical Techniques—Part A, vol. 9, no. 1, pp. 107–113, 1999.
[22]
J. M. Goldberg and T. Falcone, “Laparoscopic microsurgical tubal anastomosis with and without robotic assistance,” Human Reproduction, vol. 18, no. 1, pp. 145–147, 2003.
[23]
S. P. Dharia Patel, M. P. Steinkampf, S. J. Whitten, and B. A. Malizia, “Robotic tubal anastomosis: surgical technique and cost effectiveness,” Fertility and Sterility, vol. 90, no. 4, pp. 1175–1179, 2008.
[24]
J. F. Magrina, M. Espada, R. Munoz, B. N. Noble, and R. M. C. Kho, “Robotic adnexectomy compared with laparoscopy for adnexal mass,” Obstetrics and Gynecology, vol. 114, no. 3, pp. 581–584, 2009.
[25]
A. P. Advincula, X. Xu, S. Goudeau, and S. B. Ransom, “Robot-assisted laparoscopic myomectomy versus abdominal myomectomy: a comparison of short-term surgical outcomes and immediate costs,” Journal of Minimally Invasive Gynecology, vol. 14, no. 6, pp. 698–705, 2007.
[26]
C. E. Bedient, J. F. Magrina, B. N. Noble, and R. M. Kho, “Comparison of robotic and laparoscopic myomectomy,” The American Journal of Obstetrics & Gynecology, vol. 201, no. 6, pp. 566 e1–566 e5, 2009.
[27]
C. J. Ascher-Walsh and T. L. Capes, “Robot-assisted laparoscopic myomectomy is an improvement over laparotomy in women with a limited number of myomas,” Journal of Minimally Invasive Gynecology, vol. 17, no. 3, pp. 306–310, 2010.
[28]
E. E. Barakat, M. A. Bedaiwy, S. Zimberg, et al., “Robotic-assisted, laparoscopic, and abdominal myomectomy: a comparison of surgical outcomes,” Obstetrics & Gynecology, vol. 117, pp. 256–265, 2011.
[29]
T. N. Payne and F. R. Dauterive, “A comparison of total laparoscopic hysterectomy to robotically assisted hysterectomy: surgical outcomes in a community practice,” Journal of Minimally Invasive Gynecology, vol. 15, no. 3, pp. 286–291, 2008.
[30]
A. R. Shashoua, D. Gill, and S. R. Locher, “Robotic-assisted total laparoscopic hysterectomy versus conventional total laparoscopic hysterectomy,” Journal of the Society of Laparoendoscopic Surgeons, vol. 13, no. 3, pp. 364–369, 2009.
[31]
D. Sarlos, L. Kots, N. Stevanovic, and G. Schaer, “Robotic hysterectomy versus conventional laparoscopic hysterectomy: outcome and cost analyses of a matched case-control study,” European Journal of Obstetrics & Gynecology and Reproductive Biology, vol. 150, no. 1, pp. 92–96, 2010.
[32]
B. N. Giep, H. N. Giep, and H. B. Hubert, “Comparison of minimally invasive surgical approaches for hysterectomy at a community hospital: robotic-assisted laparoscopic hysterectomy, laparoscopic-assisted vaginal hysterectomy and laparoscopic supracervical hysterectomy,” Journal of Robotic Surgery, vol. 4, no. 3, pp. 167–175, 2010.
[33]
E. J. Geller, N. Y. Siddiqui, J. M. Wu, and A. G. Visco, “Short-term outcomes of robotic sacrocolpopexy compared with abdominal sacrocolpopexy,” Obstetrics and Gynecology, vol. 112, no. 6, pp. 1201–1206, 2008.
[34]
K. Semm, “New methods of pelviscopy (gynecologic laparoscopy) for myomectomy, ovariectomy, tubectomy and adnectomy,” Endoscopy, vol. 11, no. 2, pp. 85–93, 1979.
[35]
C. Nezhat, O. Lavie, M. Lemyre, E. Unal, C. H. Nezhat, and F. Nezhat, “Robot-assisted laparoscopic surgery in gynecology: scientific dream or reality?” Fertility and Sterility, vol. 91, no. 6, pp. 2620–2622, 2009.
[36]
C. Nezhat, N. S. Saberi, B. Shahmohamady, and F. Nezhat, “Robotic-assisted laparoscopy in gynecological surgery,” Journal of the Society of Laparoendoscopic Surgeons, vol. 10, no. 3, pp. 317–320, 2006.
[37]
C. Liu, D. Peresic, D. Samadi, and F. Nezhat, “Robotic-assisted laparoscopic partial bladder resection for the treatment of infiltrating endometriosis,” Journal of Minimally Invasive Gynecology, vol. 15, no. 6, pp. 745–748, 2008.
[38]
M. F. Chammas Jr, F. J. Kim, A. Barbarino, et al., “Asymptomatic rectal and bladder endometriosis: a case for robotic-assisted surgery,” The Canadian Journal of Urology, vol. 15, no. 3, pp. 4097–4100, 2008.
[39]
D. E. Pittaway, P. Takacs, and P. Bauguess, “Laparoscopic adnexectomy: a comparison with laparotomy,” The American Journal of Obstetrics & Gynecology, vol. 171, no. 2, pp. 385–389, discussion 389–391, 1994.
[40]
R. Seracchioli, S. Rossi, F. Govoni et al., “Fertility and obstetric outcome after laparoscopic myomectomy of large myomata: a randomized comparison with abdominal myomectomy,” Human Reproduction, vol. 15, no. 12, pp. 2663–2668, 2000.
[41]
A. P. Advincula, A. Song, W. Burke, and R. K. Reynolds, “Preliminary experience with robot-assisted laparoscopic myomectomy,” Journal of the American Association of Gynecologic Laparoscopists, vol. 11, no. 4, pp. 511–518, 2004.
[42]
M. C. Pitter, P. Anderson, A. Blissett, and N. Pemberton, “Robotic-assisted gynaecological surgery-establishing training criteria; minimizing operative time and blood loss,” International Journal of Medical Robotics and Computer Assisted Surgery, vol. 4, no. 2, pp. 114–120, 2008.
[43]
S. P. Mao, H. C. Lai, F. W. Chang, M. H. Yu, and C. C. Chang, “Laparoscopy-assisted robotic myomectomy using the da Vinci system,” Taiwanese Journal of Obstetrics & Gynecology, vol. 46, no. 2, pp. 174–176, 2007.
[44]
S. Bocca, L. Stadtmauer, and S. Oehninger, “Uncomplicated full term pregnancy after da Vinci-assisted laparoscopic myomectomy,” Reproductive BioMedicine Online, vol. 14, no. 2, article 2613, pp. 246–249, 2007.
[45]
A. P. Advincula, X. Xu, S. Goudeau, and S. B. Ransom, “Robotic-assisted, laparoscopic, and abdominal myomectomy: a comparison of surgical outcomes,” Obstetrics & Gynecology, vol. 117, no. 2, part 1, pp. 256–265, 2011.
[46]
C. J. DeFrances, K. A. Cullen, and L. J. Kozak, “National Hospital Discharge Survey: 2005 annual summary with detailed diagnosis and procedure data,” Vital and Health Statistics. Series 13, Data from the National Health Survey, no. 165, pp. 1–209, 2007.
[47]
J. M. Wu, M. E. Wechter, E. J. Geller, T. V. Nguyen, and A. G. Visco, “Hysterectomy rates in the United States, 2003,” Obstetrics and Gynecology, vol. 110, no. 5, pp. 1091–1095, 2007.
[48]
H. Reich, “New techniques in advanced laparoscopic surgery,” Bailliere's Clinical Obstetrics and Gynaecology, vol. 3, no. 3, pp. 655–681, 1989.
[49]
C. Diaz-Arrastia, C. Jurnalov, G. Gomez, and C. Townsend, “Laparoscopic hysterectomy using a computer-enhanced surgical robot,” Surgical Endoscopy and Other Interventional Techniques, vol. 16, no. 9, pp. 1271–1273, 2002.
[50]
F. Marchal, P. Rauch, J. Vandromme et al., “Telerobotic-assisted laparoscopic hysterectomy for benign and oncologic pathologies: initial clinical experience with 30 patients,” Surgical Endoscopy and Other Interventional Techniques, vol. 19, no. 6, pp. 826–831, 2005.
[51]
R. P. Fiorentino, M. A. Zepeda, B. H. Goldstein, C. R. John, and M. A. Rettenmaier, “Pilot study assessing robotic laparoscopic hysterectomy and patient outcomes,” Journal of Minimally Invasive Gynecology, vol. 13, no. 1, pp. 60–63, 2006.
[52]
A. P. Advincula, “Surgical techniques: robot-assisted laparoscopic hysterectomy with the da Vinci? surgical system,” International Journal of Medical Robotics and Computer Assisted Surgery, vol. 2, no. 4, pp. 305–311, 2006.
[53]
R. M. Kho, W. S. Hilger, J. G. Hentz, P. M. Magtibay, and J. F. Magrina, “Robotic hysterectomy: technique and initial outcomes,” The American Journal of Obstetrics & Gynecology, vol. 197, no. 1, pp. 113 e1–113 e4, 2007.
[54]
A. Gocmen, F. Sanlikan, and M. G. Ucar, “Turkey's experience of robotic-assisted laparoscopic hysterectomy: a series of 25 consecutive cases,” Archives of Gynecology and Obstetrics, vol. 282, no. 2, pp. 163–171, 2010.
[55]
J. P. Lenihan Jr., C. Kovanda, and U. Seshadri-Kreaden, “What is the learning curve for robotic assisted gynecologic surgery?” Journal of Minimally Invasive Gynecology, vol. 15, no. 5, pp. 589–594, 2008.
[56]
M. C. Bell, J. L. Torgerson, and U. Kreaden, “The first 100 da Vinci hysterectomies: an analysis of the learning curve for a single surgeon,” South Dakota Medicine, vol. 62, no. 3, pp. 91–95, 2009.
[57]
R. P. Pasic, J. A. Rizzo, H. Fang, S. Ross, M. Moore, and C. Gunnarsson, “Comparing robot-assisted with conventional laparoscopic hysterectomy: impact on cost and clinical outcomes,” Journal of Minimally Invasive Gynecology, vol. 17, no. 6, pp. 730–738, 2010.
[58]
T. N. Payne, F. R. Dauterive, M. C. Pitter et al., “Robotically assisted hysterectomy in patients with large uteri: outcomes in five community practices,” Obstetrics and Gynecology, vol. 115, no. 3, pp. 535–542, 2010.
[59]
S. H. Boyles, A. M. Weber, and L. Meyn, “Procedures for pelvic organ prolapse in the United States, 1979–1997,” The American Journal of Obstetrics & Gynecology, vol. 188, no. 1, pp. 108–115, 2003.
[60]
A. L. Olsen, V. J. Smith, J. O. Bergstrom, J. C. Colling, and A. L. Clark, “Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence,” Obstetrics and Gynecology, vol. 89, no. 4, pp. 501–506, 1997.
[61]
I. E. Nygaard, R. McCreery, L. Brubaker et al., “Abdominal sacrocolpopexy: a comprehensive review,” Obstetrics and Gynecology, vol. 104, no. 4, pp. 805–823, 2004.
[62]
D. S. DiMarco, G. K. Chow, M. T. Gettman, and D. S. Elliott, “Robotic-assisted laparoscopic sacrocolpopexy for treatment of vaginal vault prolapse,” Urology, vol. 63, no. 2, pp. 373–376, 2004.
[63]
D. S. Elliott, I. Frank, D. S. DiMarco, and G. K. Chow, “Gynecologic use of robotically assisted laparoscopy: sacrocolpopexy for the treatment of high-grade vaginal vault prolapse,” The American Journal of Surgery, vol. 188, no. 4A, pp. 52S–56S, 2004.
[64]
D. S. Elliott, G. K. Chow, and M. Gettman, “Current status of robotics in female urology and gynecology,” World Journal of Urology, vol. 24, no. 2, pp. 188–192, 2006.
[65]
F. Daneshgari, J. C. Kefer, C. Moore, and J. Kaouk, “Robotic abdominal sacrocolpopexy/sacrouteropexy repair of advanced female pelvic organ prolaspe (POP): utilizing POP-quantification-based staging and outcomes,” BJU International, vol. 100, no. 4, pp. 875–879, 2007.
[66]
S. S. Chan, S. M. Pang, T. H. Cheung, R. Y. Cheung, and T. K. Chung, “Laparoscopic sacrocolpopexy for the treatment of vaginal vault prolapse: with or without robotic assistance,” Hong Kong Medical Journal, vol. 17, no. 1, pp. 54–60, 2011.
[67]
O. Melamud, L. Eichel, B. Turbow, and A. Shanberg, “Laparoscopic vesicovaginal fistula repair with robotic reconstruction,” Urology, vol. 65, no. 1, pp. 163–166, 2005.
[68]
B. M. Sundaram, G. Kalidasan, and A. K. Hemal, “Robotic repair of vesicovaginal fistula: case series of five patients,” Urology, vol. 67, no. 5, pp. 970–973, 2006.
[69]
R. Laungani, N. Patil, L. S. Krane et al., “Robotic-assisted ureterovaginal fistula repair: report of efficacy and feasiblity,” Journal of Laparoendoscopic and Advanced Surgical Techniques—Part A, vol. 18, no. 5, pp. 731–734, 2008.
[70]
A. K. Hemal, S. B. Kolla, and P. Wadhwa, “Robotic reconstruction for recurrent supratrigonal vesicovaginal fistulas,” Journal of Urology, vol. 180, no. 3, pp. 981–985, 2008.
[71]
C. Kim, B. Campbell, and F. Ferrer, “Robotic sigmoid vaginoplasty: a novel technique,” Urology, vol. 72, no. 4, pp. 847–849, 2008.
[72]
National Cancer Institute, “Endometrial cancer,” http://www.cancer.gov/cancertopics/types/endometrial/.
[73]
L. G. Seamon, J. M. Fowler, and D. E. Cohn, “Lymphadenectomy for endometrial cancer: the controversy,” Gynecologic Oncology, vol. 117, no. 1, pp. 6–8, 2010.
[74]
R. R. Barakat, G. Lev, A. J. Hummer et al., “Twelve-year experience in the management of endometrial cancer: a change in surgical and postoperative radiation approaches,” Gynecologic Oncology, vol. 105, no. 1, pp. 150–156, 2007.
[75]
J. L. Walker, M. R. Piedmonte, N. M. Spirtos, et al., “Laparoscopy compared with laparotomy for comprehensive surgical staging of uterine cancer: Gynecologic Oncology Group Study LAP2,” Journal of Clinical Oncology, vol. 27, no. 32, pp. 5331–5336, 2009.
[76]
A. B. Kornblith, H. Q. Huang, J. L. Walker, N. M. Spirtos, J. Rotmensch, and D. Cella, “Quality of life of patients with endometrial cancer undergoing laparoscopic international federation of gynecology and obstetrics staging compared with laparotomy: a Gynecologic Oncology Group study,” Journal of Clinical Oncology, vol. 27, no. 32, pp. 5337–5342, 2009.
[77]
N. C. Dupont, R. Chandrasekhar, G. Wilding, and K. A. Guru, “Current trends in robot assisted surgery: a survey of gynecologic oncologists,” International Journal of Medical Robotics and Computer Assisted Surgery, vol. 6, no. 4, pp. 468–472, 2010.
[78]
D. O. Holtz, G. Miroshnichenko, M. O. Finnegan, M. Chernick, and C. J. Dunton, “Endometrial cancer surgery costs: robot vs laparoscopy,” Journal of Minimally Invasive Gynecology, vol. 17, no. 4, pp. 500–503, 2010.
[79]
A. Gocmen, F. Sanlikan, M. G. Ucar, et al., “Comparison of robotic-assisted surgery outcomes with laparotomy for endometrial cancer staging in Turkey,” Archives of Gynecology and Obstetrics, vol. 282, no. 5, pp. 539–545, 2010.
[80]
Y. W. Jung, D. W. Lee, S. W. Kim et al., “Robot-assisted staging using three robotic arms for endometrial cancer: comparison to laparoscopy and laparotomy at a single institution,” Journal of Surgical Oncology, vol. 101, no. 2, pp. 116–121, 2010.
[81]
J. F. Boggess, P. A. Gehrig, L. Cantrell et al., “A comparative study of 3 surgical methods for hysterectomy with staging for endometrial cancer: robotic assistance, laparoscopy, laparotomy,” The American Journal of Obstetrics & Gynecology, vol. 199, no. 4, pp. 360 e1–360 e9, 2008.
[82]
P. C. Lim, E. Kang, and H. Park, “A comparative detail analysis of the learning curve and surgical outcome for robotic hysterectomy with lymphadenectomy versus laparoscopic hysterectomy with lymphadenectomy in treatment of endometrial cancer: a case-matched controlled study of the first one hundred twenty two patients,” Gynecologic Oncology, vol. 120, no. 3, pp. 413–418, 2011.
[83]
D. S. Veljovich, P. J. Paley, C. W. Drescher, E. N. Everett, C. Shah, and W. A. Peters, “Robotic surgery in gynecologic oncology: program initiation and outcomes after the first year with comparison with laparotomy for endometrial cancer staging,” The American Journal of Obstetrics & Gynecology, vol. 198, no. 6, pp. 679 e9–679 e10, 2008.
[84]
P. A. Gehrig, L. A. Cantrell, A. Shafer, L. N. Abaid, A. Mendivil, and J. F. Boggess, “What is the optimal minimally invasive surgical procedure for endometrial cancer staging in the obese and morbidly obese woman?” Gynecologic Oncology, vol. 111, no. 1, pp. 41–45, 2008.
[85]
J. F. Boggess, P. A. Gehrig, L. Cantrell, et al., “A case-control study of robot-assisted type III radical hysterectomy with pelvic lymph node dissection compared with open radical hysterectomy,” The American Journal of Obstetrics & Gynecology, vol. 199, no. 4, pp. 357 e1–357 e7, 2008.
[86]
M. C. Bell, J. Torgerson, U. Seshadri-Kreaden, A. W. Suttle, and S. Hunt, “Comparison of outcomes and cost for endometrial cancer staging via traditional laparotomy, standard laparoscopy and robotic techniques,” Gynecologic Oncology, vol. 111, no. 3, pp. 407–411, 2008.
[87]
S. A. DeNardis, R. W. Holloway, G. E. Bigsby, D. P. Pikaart, S. Ahmad, and N. J. Finkler, “Robotically assisted laparoscopic hysterectomy versus total abdominal hysterectomy and lymphadenectomy for endometrial cancer,” Gynecologic Oncology, vol. 111, no. 3, pp. 412–417, 2008.
[88]
L. G. Seamon, J. M. Fowler, D. E. Cohn et al., “Robotic hysterectomy and pelvic-aortic lymphadenectomy for endometrial cancer,” Obstetrics and Gynecology, vol. 112, no. 6, pp. 1207–1213, 2008.
[89]
L. G. Seamon, S. A. Bryant, P. S. Rheaume, et al., “Comprehensive surgical staging for endometrial cancer in obese patients: comparing robotics and laparotomy,” Obstetrics & Gynecology, vol. 114, no. 1, pp. 16–21, 2009.
[90]
J. Cardenas-Goicoechea, S. Adams, S. B. Bhat, and T. C. Randall, “Surgical outcomes of robotic-assisted surgical staging for endometrial cancer are equivalent to traditional laparoscopic staging at a minimally invasive surgical center,” Gynecologic Oncology, vol. 117, no. 2, pp. 224–228, 2010.
[91]
P. C. Lim, E. Kang, H. Park, et al., “Learning curve and surgical outcome for robotic-assisted hysterectomy with lymphadenectomy: case-matched controlled comparison with laparoscopy and laparotomy for treatment of endometrial cancer,” Journal of Minimally Invasive Gynecology, vol. 17, no. 6, pp. 739–748, 2010.
[92]
J. F. Magrina, R.M. Kho, A. L. Weaver, R. P. Montero, and P. M. Magtibay, “Robotic radical hysterectomy: comparison with laparoscopy and laparotomy,” Gynecologic Oncology, vol. 109, no. 1, pp. 86–91, 2008.
[93]
J. P. Geisler, C. J. Orr, N. Khurshid, G. Phibbs, and K. J. Manahan, “Robotically assisted laparoscopic radical hysterectomy compared with open radical hysterectomy,” International Journal of Gynecological Cancer, vol. 20, no. 3, pp. 438–442, 2010.
[94]
R. Estape, N. Lambrou, R. Diaz, E. Estape, N. Dunkin, and A. Rivera, “A case matched analysis of robotic radical hysterectomy with lymphadenectomy compared with laparoscopy and laparotomy,” Gynecologic Oncology, vol. 113, no. 3, pp. 357–361, 2009.
[95]
A. Maggioni, L. Minig, V. Zanagnolo, et al., “Robotic approach for cervical cancer: comparison with laparotomy: a case control study,” Gynecologic Oncology, vol. 115, no. 1, pp. 60–64, 2009.
[96]
E. J. Nam, S. W. Kim, S. Kim, et al., “A case-control study of robotic radical hysterectomy and pelvic lymphadenectomy using 3 robotic arms compared with abdominal radical hysterectomy in cervical cancer,” International Journal of Gynecological Cancer, vol. 20, no. 7, pp. 1284–1289, 2010.
[97]
M. B. Sert and V. Abeler, “Robot-assisted laparoscopic radical hysterectomy: comparison with total laparoscopic hysterectomy and abdominal radical hysterectomy; one surgeon's experience at the Norwegian Radium Hospital,” Gynecologic Oncology, vol. 121, no. 3, pp. 600–604, 2011.
[98]
R. Tinelli, M. Malzoni, F. Cosentino, et al., “Robotics versus laparoscopic radical hysterectomy with lymphadenectomy in patients with early cervical cancer: a multicenter study,” Annals of Surgical Oncology, vol. 18, no. 9, pp. 2622–2628, 2011.
[99]
J. F. Magrina, W. Pawlina, R. M. Kho, and P. M. Magtibay, “Robotic nerve-sparing radical hysterectomy: feasibility and technique,” Gynecologic Oncology, vol. 121, no. 3, pp. 605–609, 2011.
[100]
J. C. Barnett, J. P. Judd, J. M. Wu, C. D. Scales, E. R. Myers, and L. J. Havrilesky, “Cost comparison among robotic, laparoscopic, and open hysterectomy for endometrial cancer,” Obstetrics and Gynecology, vol. 116, no. 3, pp. 685–693, 2010.
[101]
M. Frumovitz, R. Dos Reis, C. C. Sun et al., “Comparison of total laparoscopic and abdominal radical hysterectomy for patients with early-stage cervical cancer,” Obstetrics and Gynecology, vol. 110, no. 1, pp. 96–102, 2007.
[102]
P. T. Ramirez, B. M. Slomovitz, P. T. Soliman, R. L. Coleman, and C. Levenback, “Total laparoscopic radical hysterectomy and lymphadenectomy: the M. D. Anderson Cancer Center experience,” Gynecologic Oncology, vol. 102, no. 2, pp. 252–255, 2006.
[103]
B. M. Sert and V. M. Abeler, “Robotic-assisted laparoscopic radical hysterectomy (Piver type III) with pelvic node dissection—case report,” European Journal of Gynaecological Oncology, vol. 27, no. 5, pp. 531–533, 2006.
[104]
B. Sert and V. Abeler, “Robotic radical hysterectomy in early-stage cervical carcinoma patients, comparing results with total laparoscopic radical hysterectomy cases. The future is now?” International Journal of Medical Robotics and Computer Assisted Surgery, vol. 3, no. 3, pp. 224–228, 2007.
[105]
J. Fanning, B. Fenton, and M. Purohit, “Robotic radical hysterectomy,” The American Journal of Obstetrics & Gynecology, vol. 198, no. 6, pp. 649 e1–649 e4, 2008.
[106]
M. P. Lowe, D. H. Chamberlain, S. A. Kamelle, P. R. Johnson, and T. D. Tillmanns, “A multi-institutional experience with robotic-assisted radical hysterectomy for early stage cervical cancer,” Gynecologic Oncology, vol. 113, no. 2, pp. 191–194, 2009.
[107]
Y. T. Kim, S. W. Kim, W. J. Hyung, S. J. Lee, E. J. Nam, and W. J. Lee, “Robotic radical hysterectomy with pelvic lymphadenectomy for cervical carcinoma: a pilot study,” Gynecologic Oncology, vol. 108, no. 2, pp. 312–316, 2008.
[108]
J. Persson, P. Reynisson, C. Borgfeldt, P. Kannisto, B. Lindahl, and T. Bossmar, “Robot assisted laparoscopic radical hysterectomy and pelvic lymphadenectomy with short and long term morbidity data,” Gynecologic Oncology, vol. 113, no. 2, pp. 185–190, 2009.
[109]
G. W. Yim, S. W. Kim, E. J. Nam, and Y. T. Kim, “Role of robot-assisted surgery in cervical cancer,” International Journal of Gynecological Cancer, vol. 21, no. 1, pp. 173–181, 2011.
[110]
E. M. Ko, M. G. Muto, R. S. Berkowitz, and C. M. Feltmate, “Robotic versus open radical hysterectomy: a comparative study at a single institution,” Gynecologic Oncology, vol. 111, no. 3, pp. 425–430, 2008.
[111]
E. Lambaudie, G. Houvenaeghel, J. Walz et al., “Robot-assisted laparoscopy in gynecologic oncology,” Surgical Endoscopy and Other Interventional Techniques, vol. 22, no. 12, pp. 2743–2747, 2008.
[112]
F. R. Nezhat, M. S. Datta, C. Liu, L. Chuang, and K. Zakashansky, “Robotic radical hysterectomy versus total laparoscopic radical hysterectomy with pelvic lymphadenectomy for treatment of early cervical cancer,” Journal of the Society of Laparoendoscopic Surgeons, vol. 12, no. 3, pp. 227–237, 2008.
[113]
E. Lambaudie, F. Narducci, M. Bannier et al., “Role of robot-assisted laparoscopy in adjuvant surgery for locally advanced cervical cancer,” European Journal of Surgical Oncology, vol. 36, no. 4, pp. 409–413, 2010.
[114]
H. W. R. Schreuder, R. P. Zweemer, W. M. Van Baal, J. Van De Lande, J. C. Dijkstra, and R. H. M. Verheijen, “From open radical hysterectomy to robot-assisted laparoscopic radical hysterectomy for early stage cervical cancer: aspects of a single institution learning curve,” Gynecological Surgery, vol. 7, no. 3, pp. 253–258, 2010.
[115]
A. Obermair, V. Gebski, M. Frumovitz et al., “A phase III randomized clinical trial comparing laparoscopic or robotic radical hysterectomy with abdominal radical hysterectomy in patients with early stage cervical cancer,” Journal of Minimally Invasive Gynecology, vol. 15, no. 5, pp. 584–588, 2008.
[116]
J. P. Geisler, C. J. Orr, and K. J. Manahan, “Robotically assisted total laparoscopic radical trachelectomy for fertility sparing in stage IB1 adenosarcoma of the cervix,” Journal of Laparoendoscopic and Advanced Surgical Techniques, vol. 18, no. 5, pp. 727–729, 2008.
[117]
L. T. Chuang, D. L. Lerner, C. S. Liu, and F. R. Nezhat, “Fertility-sparing robotic-assisted radical trachelectomy and bilateral pelvic lymphadenectomy in early-stage cervical cancer,” Journal of Minimally Invasive Gynecology, vol. 15, no. 6, pp. 767–770, 2008.
[118]
J. Persson, P. Kannisto, and T. Bossmar, “Robot-assisted abdominal laparoscopic radical trachelectomy,” Gynecologic Oncology, vol. 111, no. 3, pp. 564–567, 2008.
[119]
A. F. Burnett, P. J. Stone, L. A. Duckworth, and J. J. Roman, “Robotic radical trachelectomy for preservation of fertility in early cervical cancer: case series and description of technique,” Journal of Minimally Invasive Gynecology, vol. 16, no. 5, pp. 569–572, 2009.
[120]
P. T. Ramirez, K. M. Schmeler, A. Malpica, and P. T. Soliman, “Safety and feasibility of robotic radical trachelectomy in patients with early-stage cervical cancer,” Gynecologic Oncology, vol. 116, no. 3, pp. 512–515, 2010.
[121]
P. T. Ramirez, K. M. Schmeler, J. K. Wolf, J. Brown, and P. T. Soliman, “Robotic radical parametrectomy and pelvic lymphadenectomy in patients with invasive cervical cancer,” Gynecologic Oncology, vol. 111, no. 1, pp. 18–21, 2008.
[122]
A. N. Al-Niaimi, M. H. Einstein, L. Perry, E. M. Hartenbach, and D. M. Kushner, “Uterine artery sparing robotic radical trachelectomy (AS-RRT) for early cancer of the cervix,” International Journal of Gynaecology and Obstetrics, vol. 112, no. 1, pp. 76–80, 2011.
[123]
I. Vergote, B. Pouseele, T. Van Gorp et al., “Robotic retroperitoneal lower para-aortic lymphadenectomy in cervical carcinoma: first report on the technique used in 5 patients,” Acta Obstetricia et Gynecologica Scandinavica, vol. 87, no. 7, pp. 783–787, 2008.
[124]
M. Fastrez, J. Vandromme, P. George, S. Rozenberg, and M. Degueldre, “Robot assisted laparoscopic transperitoneal para-aortic lymphadenectomy in the management of advanced cervical carcinoma,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 147, no. 2, pp. 226–229, 2009.
[125]
E. Lambaudie, F. Narducci, E. Leblanc, M. Bannier, and G. Houvenaeghel, “Robotically-assisted laparoscopic anterior pelvic exenteration for recurrent cervical cancer: report of three first cases,” Gynecologic Oncology, vol. 116, no. 3, pp. 582–583, 2010.
[126]
M. A. Davis, S. Adams, D. Eun, D. Lee, and T. C. Randall, “Robotic-assisted laparoscopic exenteration in recurrent cervical cancer Robotics improved the surgical experience for 2 women with recurrent cervical cancer,” The American Journal of Obstetrics & Gynecology, vol. 202, no. 6, pp. 663–e1, 2010.
[127]
P. C. W. Lim, “Robotic assisted total pelvic exenteration: a case report,” Gynecologic Oncology, vol. 115, no. 2, pp. 310–311, 2009.
[128]
A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA: A Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010.
[129]
J. B. Field, M. F. Benoit, T. A. Dinh, and C. Diaz-Arrastia, “Computer-enhanced robotic surgery in gynecologic oncology,” Surgical Endoscopy and Other Interventional Techniques, vol. 21, no. 2, pp. 244–246, 2007.
[130]
J. F. Magrina, V. Zanagnolo, B. N. Noble, R. M. Kho, and P. Magtibay, “Robotic approach for ovarian cancer: perioperative and survival results and comparison with laparoscopy and laparotomy,” Gynecologic Oncology, vol. 121, no. 1, pp. 100–105, 2011.
[131]
D. A. Iglesias and P. T. Ramirez, “Role of minimally invasive surgery in staging of ovarian cancer,” Current Treatment Options in Oncology, vol. 12, no. 3, pp. 217–229, 2011.
[132]
“ACOG technology assessment in obstetrics and gynecology No. 6: robot-assisted surgery,” Obstetrics & Gynecology, vol. 114, no. 5, pp. 1153–1155, 2009.