全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

集成多特征与稀疏编码的图像分类方法

, PP. 345-355

Keywords: 图像分类,空间金字塔,集成,多特征组合,稀疏编码

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用单一特征时存在提取信息量不足、对图像内容描述较片面等问题,单一编码方法在组织特征向量时也会对图像造成过多的信息丢失.针对这些问题,文中提出一种集成多特征与稀疏编码方法.首先,对图像进行空间金字塔划分,结合尺度不变特征和梯度方向直方图特征之间的优势互补性,提取得到不同的特征集.然后,在不同的特征集上用不同的聚类方法得到不同的视觉词汇本,在每个词汇本上分别进行局部稀疏编码和稀疏编码,得到不同的图像描述集.最后,利用线性SVM进行图像分类,并对得到的多个结果采用投票决策方法决定最终分类情况.实验表明文中方法有良好的准确性和鲁棒性.

References

[1]  Qi X J, Han Y T. Incorporating Multiple SVMs for Automatic Image Annotation. Pattern Recognition, 2007, 40(2): 728-741
[2]  Gabriella C, Dance C R, Fan L X, et al. Visual Categorization with Bags of Keypoints // Proc of the Workshop on Statistical Learning in Computer Vision. Prague, Czech Republic, 2004: 1-22
[3]  Lazebnik S, Schmid C, Ponce J. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA, 2006, II: 2169-2178
[4]  Hao K. Image Feature Extraction and Its Application via Sparse Coding. Master Dissertation. Hangzhou, China: Zhejiang University, 2012 (in Chinese)(郝 凯.基于稀疏编码的图像视觉特征提取及应用.硕士学位论文.杭州:浙江大学, 2012)
[5]  Harzallah H, Jurie F, Schmid C. Combining Efficient Object Loca-lization and Image Classification // Proc of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan, 2009: 237-244
[6]  Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110
[7]  Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, I: 886-893
[8]  Jiang Y, Wang R S. Scene Classification Based on Multi-feature Extended pLSA Model. Signal Processing, 2010, 26(4): 539-544 (in Chinese)(江 悦,王润生.基于多特征扩展pLSA模型的场景图像分类.信号处理, 2010, 26(4): 539-544)
[9]  Gao C X, Sang N. Unifying Local Features and Filterbank Features in the Spatial Pyramid Matching Model. Acta Electronica Sinica, 2011, 39(9): 2034-2038 (in Chinese)(高常鑫,桑 农.整合局部特征和滤波器特征的空间金字塔匹配模型.电子学报, 2011, 39(9): 2034-2038)
[10]  Fu Y, Xian Y M. Image Classification Based on Multi-feature and Improved SVM Ensemble. Computer Engineering, 2011, 37(21): 196-199 (in Chinese)(付 燕,鲜艳明.基于多特征和改进SVM集成的图像分类.计算机工程, 2011, 37(21): 196-199)
[11]  Lee H, Battle A, Raina R, et al. Efficient Sparse Coding Algorithms[EB/OL]. [2012-12-12]. http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2006_878.pdf
[12]  Wang J J, Yang J C, Yu K, et al. Locality-Constrained Linear Coding for Image Classification // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010: 3360-3367
[13]  Yang J C, Yu K, Gong Y H, et al. Linear Spatial Pyramid Ma-tching Using Sparse Coding for Image Classification // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 1794-1801
[14]  Cui Z. Cooperative Intrusion Detection System Based on Sparse Coding and Multi-class Support Vector Machine. Computer Engineering and Design, 2011, 32(11): 3606-3612 (in Chinese)(崔 振.基于稀疏编码和多类SVM的入侵检测.计算机工程与设计, 2011, 32(11): 3606-3612)
[15]  Yang M, Wang F. A Classifier Ensemble Algorithm Based on Local Random Subspace. Pattern Recognition and Artificial Intelligence, 2012, 25(4): 595-603 (in Chinese)(杨 明,王 飞.一种基于局部随机子空间的分类集成算法.模式识别与人工智能, 2012, 25(4): 595-603)
[16]  Tao Y, Zeng Z Y, Yu J K, et al. Completeness Proof and Implementation of Parallel k-means Clustering Algorithm. Computer Engineering, 2010, 36(22): 72-74 (in Chinese)(陶 冶,曾志勇,余建坤,等.并行k均值聚类算法的完备性证明与实现.计算机工程, 2010, 36(22): 72-74)
[17]  Moosmann F, Triggs B, Jurie F. Fast Discriminative Visual Codebooks Using Randomized Clustering Forests[EB/OL]. [2012-12-12]. http://eprints.pascal-network.org/archive/00002438/01/nips.pdf
[18]  Luo H L. Clustering Integration Theory and Its Application in Image Classification. Beijing, China: Science Press, 2012 (in Chinese)(罗会兰.聚类集成理论与其在图像分类中的应用.北京:科学出版社, 2012)
[19]  Yu K, Zhang T, Gong Y H. Nonlinear Learning Using Local Coordinate Coding[EB/OL]. [2012-12-12]. http://www.dbs.informatik.uni-muenchen.de/~yu_k/nips09_lcc.pdf
[20]  Li F F, Fergus R, Perona P. Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories. Computer Vision and Image Understanding, 2007, 106(1): 59-70
[21]  Griffin G, Holub A, Perona P. Caltech-256 Object Category Dataset[DB/OL]. [2012-12-12]. http://authors.library.caltech.edu/7694/1/CNS-TR-2007-001.pdf
[22]  Li F F, Perona P. A Bayesian Hierarchical Model for Learning Natural Scene Categories // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, II: 524-531
[23]  Oliva A, Aotonio T. Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope. International Journal of Computer Vision, 2001, 42(3): 145-175
[24]  Chang C C, Lin C J. LIBSVM: A Library for Support Vector Machines. ACM Trans on Intelligent Systems and Technology, 2011, 2(3): 1-25
[25]  Gemert J C, Geusebroek J M, Veenman C J, et al. Kernel Codebooks for Scene Categorization // Proc of the 10th European Confe-rence on Computer Vision. Marseille, France, 2008, III: 696-709
[26]  Qi X Z, Wang Q. An Image Classification Approach Based on Sparse Coding and Multiple Kernel Learning. Acta Electronica Si-nica, 2012, 40(4): 773-779 (in Chinese)(亓晓振,王 庆.一种基于稀疏编码的多核学习图像分类方法.电子学报, 2012, 40(4): 773-779)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133