全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于回归系数的时间序列维约简与相似性查找*

, PP. 52-57

Keywords: 时间序列,回归系数,维约简,相似性查找

Full-Text   Cite this paper   Add to My Lib

Abstract:

在时间序列中进行相似性查找往往需要进行维约简.以往的维约简方法或者时间复杂度太大并且不直观(如DWT、DFT等),或者无法用于准确的相似性查找(如PAA方法).本文提出一种新的基于回归系数的时间序列维约简方法——逐段回归近似(PRA).该方法具有线性时间复杂度,并且对均值平稳的独立噪声干扰不敏感,同时证明了基于PRA方法的相似性查找满足下界定理,因而是实用有效的.对实际数据的实验结果验证了本文的结论.

References

[1]  Keogh E, Kasetty S. On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration. In: Proc of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002, 102-111
[2]  Keogh E J, Chu S, Hart D, Pazzani M J. An Online Algorithm for Segmenting Time Series. In: Proc of the IEEE International Conference on Data Mining. Washington, USA: IEEE Computer Society, 2001, 289-296
[3]  Faloutsos C, Ranganathan M, Manolopoulos Y. Fast Subsequence Matching in Time-Series Databases. In: Proc of the ACM SIGMOD International Conference on Management of Data. Minneapolis, USA, 1994, 419-429
[4]  Chan K P, Fu A W. Efficient Time Series Matching by Wavelets. In: Proc of the 15th International Conference on Data Engineering. Sydney, Australia, 1999, 126-133
[5]  Zhao H, Hou J R, Shi B L. Research on Similarity of Stochastic Non-Stationary Time Series Based on Wavelet-Fractal. Journal of Software, 2004, 15(5): 633-640 (in Chinese) (赵 慧, 侯建荣, 施伯乐. 随机非平稳时间序列数据的相似性研究. 软件学报, 2004, 15(5): 633-640)
[6]  Keogh E J, Pazzani M J. Relevance Feedback Retrieval of Time Series Data. In: Proc of the 22th Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval. Berkeley, USA, 1999, 183-190
[7]  Keogh E, Chakrabarti K, Mehrotra S, Pazzani M. Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases. ACM Trans on Database Systems, 2002, 27(2): 188-228
[8]  Lin J, Keogh E, Lonardi S, Chiu B. A Symbolic Representation of Time Series, with Implications for Streaming Algorithms. In: Proc of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. San Diego, USA, 2003, 2-11
[9]  Mills T C. The Econometric Modelling of Financial Time Series. 2nd Edition. Cambridge, UK: Cambridge University Press, 1999
[10]  Webb A R. Statistical Pattern Recognition. 2nd Edition. London, UK: John Wiley Press, 2002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133